This vignette demonstrates how to access most of data stored in a stanfit object. A stanfit object (an object of class "stanfit"
) contains the output derived from fitting a Stan model using Markov chain Monte Carlo or one of Stan’s variational approximations (meanfield or full-rank). Throughout the document we’ll use the stanfit object obtained from fitting the Eight Schools example model:
Warning: There were 1 divergent transitions after warmup. See
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
to find out why this is a problem and how to eliminate them.
Warning: Examine the pairs() plot to diagnose sampling problems
[1] "stanfit"
attr(,"package")
[1] "rstan"
There are several functions that can be used to access the draws from the posterior distribution stored in a stanfit object. These are extract
, as.matrix
, as.data.frame
, and as.array
, each of which returns the draws in a different format.
The extract
function (with its default arguments) returns a list with named components corresponding to the model parameters.
[1] "mu" "tau" "eta" "theta" "lp__"
In this model the parameters mu
and tau
are scalars and theta
is a vector with eight elements. This means that the draws for mu
and tau
will be vectors (with length equal to the number of post-warmup iterations times the number of chains) and the draws for theta
will be a matrix, with each column corresponding to one of the eight components:
[1] 13.3212042 14.8153607 6.5865173 16.0001848 10.6981082 0.7047223
[1] 3.7350142 5.8608581 0.3487159 3.2358066 7.0687195 0.3506794
iterations [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 8.85915640 17.274443596 9.719025 11.8454303 18.5036367 12.786830
[2,] 4.42647454 6.222250808 15.407103 7.6874140 4.9630447 2.097809
[3,] 6.45387288 6.376145007 6.610307 6.5675790 6.2417981 6.159547
[4,] 19.67709933 12.940005771 18.043622 14.6041229 17.1902471 17.904162
[5,] 1.67558670 4.630624727 3.890733 7.9450595 16.2425341 2.791847
[6,] 0.01142897 0.001214198 1.234152 0.7985139 0.7600677 1.236998
iterations [,7] [,8]
[1,] 14.4416680 9.9219174
[2,] 15.5869203 11.2871285
[3,] 6.4175444 6.6798302
[4,] 18.3065606 13.8728077
[5,] 13.7616607 23.8159412
[6,] 0.8628509 0.8517842
The as.matrix
, as.data.frame
, and as.array
functions can also be used to retrieve the posterior draws from a stanfit object:
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
$iterations
NULL
$chains
[1] "chain:1" "chain:2" "chain:3" "chain:4"
$parameters
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
The as.matrix
and as.data.frame
methods essentially return the same thing except in matrix and data frame form, respectively. The as.array
method returns the draws from each chain separately and so has an additional dimension:
[1] 4000 19
[1] 4000 19
[1] 1000 4 19
By default all of the functions for retrieving the posterior draws return the draws for all parameters (and generated quantities). The optional argument pars
(a character vector) can be used if only a subset of the parameters is desired, for example:
parameters
iterations mu theta[1]
[1,] 3.342844 7.371265
[2,] 2.692468 9.833861
[3,] 1.247567 10.043951
[4,] 9.426720 9.804634
[5,] 11.046511 26.330013
[6,] 13.425271 12.910125
Summary statistics are obtained using the summary
function. The object returned is a list with two components:
[1] "summary" "c_summary"
In fit_summary$summary
all chains are merged whereas fit_summary$c_summary
contains summaries for each chain individually. Typically we want the summary for all chains merged, which is what we’ll focus on here.
The summary is a matrix with rows corresponding to parameters and columns to the various summary quantities. These include the posterior mean, the posterior standard deviation, and various quantiles computed from the draws. The probs
argument can be used to specify which quantiles to compute and pars
can be used to specify a subset of parameters to include in the summary.
For models fit using MCMC, also included in the summary are the Monte Carlo standard error (se_mean
), the effective sample size (n_eff
), and the R-hat statistic (Rhat
).
mean se_mean sd 2.5% 25%
mu 7.698817169 0.16147780 5.1827995 -3.134666 4.5511659
tau 6.485647812 0.18449557 5.4481749 0.258044 2.4976837
eta[1] 0.361154031 0.01554519 0.9189432 -1.554034 -0.2453936
eta[2] 0.003415669 0.01517788 0.8802417 -1.710428 -0.5732260
eta[3] -0.197730071 0.01599059 0.9433573 -2.002115 -0.8385973
eta[4] -0.034838256 0.01568604 0.8985815 -1.810332 -0.6290423
eta[5] -0.366826627 0.01615021 0.8738727 -2.005131 -0.9359947
eta[6] -0.227467878 0.01685473 0.8854476 -1.963065 -0.8209408
eta[7] 0.338580948 0.01427317 0.8911706 -1.483719 -0.2422416
eta[8] 0.050911151 0.01553126 0.9573438 -1.857891 -0.5795116
theta[1] 10.950091414 0.15711227 8.1375906 -2.447700 5.7529748
theta[2] 7.850553371 0.10085798 6.3796969 -4.687959 3.8401807
theta[3] 5.892077782 0.17678905 7.7843989 -11.093990 1.6484095
theta[4] 7.465017514 0.10557186 6.7298178 -6.359472 3.5652211
theta[5] 4.976472811 0.10951295 6.4035072 -8.630574 1.0737667
theta[6] 6.038874844 0.10399162 6.7442772 -9.455661 2.2417276
theta[7] 10.470061217 0.12203383 6.7273826 -1.661039 6.0771787
theta[8] 8.247470937 0.13967029 8.0694618 -7.514123 3.7369073
lp__ -39.617893683 0.07600704 2.6429650 -45.842842 -41.2090454
50% 75% 97.5% n_eff Rhat
mu 7.857491309 11.0280530 17.547551 1030.1564 1.0013811
tau 5.180916979 8.9962900 20.274920 872.0275 1.0009789
eta[1] 0.382392087 1.0029044 2.101476 3494.5004 0.9996257
eta[2] 0.006395265 0.5931581 1.682653 3363.4227 1.0002048
eta[3] -0.201374307 0.4388211 1.630318 3480.3560 1.0007617
eta[4] -0.034712736 0.5733512 1.682458 3281.6191 1.0008941
eta[5] -0.398852307 0.1799011 1.461182 2927.7886 1.0010824
eta[6] -0.224152120 0.3405167 1.539924 2759.8279 1.0001101
eta[7] 0.347008515 0.9476267 2.020013 3898.3509 0.9995406
eta[8] 0.041715186 0.6926332 1.899227 3799.4677 1.0001401
theta[1] 9.891088018 15.0502761 29.824384 2682.6961 1.0003242
theta[2] 7.847118399 11.6930852 21.251618 4001.1018 0.9995204
theta[3] 6.501065386 10.7251488 20.098080 1938.8286 1.0015354
theta[4] 7.478735786 11.5943354 20.934503 4063.5935 1.0002556
theta[5] 5.490246117 9.2467162 16.684115 3419.0452 1.0000111
theta[6] 6.525678750 10.1860097 18.748818 4206.0470 0.9998108
theta[7] 9.929853082 14.2088180 25.761954 3039.0073 0.9994757
theta[8] 8.161486689 12.4254396 25.789576 3337.9596 0.9994041
lp__ -39.310060531 -37.7191522 -35.262139 1209.1362 1.0017940
If, for example, we wanted the only quantiles included to be 10% and 90%, and for only the parameters included to be mu
and tau
, we would specify that like this:
mu_tau_summary <- summary(fit, pars = c("mu", "tau"), probs = c(0.1, 0.9))$summary
print(mu_tau_summary)
mean se_mean sd 10% 90% n_eff Rhat
mu 7.698817 0.1614778 5.182800 1.244899 13.99973 1030.1564 1.001381
tau 6.485648 0.1844956 5.448175 1.050183 13.38310 872.0275 1.000979
Since mu_tau_summary
is a matrix we can pull out columns using their names:
10% 90%
mu 1.244899 13.99973
tau 1.050183 13.38310
For models fit using MCMC the stanfit object will also contain the values of parameters used for the sampler. The get_sampler_params
function can be used to access this information.
The object returned by get_sampler_params
is a list with one component (a matrix) per chain. Each of the matrices has number of columns corresponding to the number of sampler parameters and the column names provide the parameter names. The optional argument inc_warmup (defaulting to TRUE
) indicates whether to include the warmup period.
sampler_params <- get_sampler_params(fit, inc_warmup = FALSE)
sampler_params_chain1 <- sampler_params[[1]]
colnames(sampler_params_chain1)
[1] "accept_stat__" "stepsize__" "treedepth__" "n_leapfrog__"
[5] "divergent__" "energy__"
To do things like calculate the average value of accept_stat__
for each chain (or the maximum value of treedepth__
for each chain if using the NUTS algorithm, etc.) the sapply
function is useful as it will apply the same function to each component of sampler_params
:
mean_accept_stat_by_chain <- sapply(sampler_params, function(x) mean(x[, "accept_stat__"]))
print(mean_accept_stat_by_chain)
[1] 0.8708411 0.8719242 0.8294883 0.8801992
max_treedepth_by_chain <- sapply(sampler_params, function(x) max(x[, "treedepth__"]))
print(max_treedepth_by_chain)
[1] 4 4 4 4
The Stan program itself is also stored in the stanfit object and can be accessed using get_stancode
:
The object code
is a single string and is not very intelligible when printed:
[1] "data {\n int<lower=0> J; // number of schools\n real y[J]; // estimated treatment effects\n real<lower=0> sigma[J]; // s.e. of effect estimates\n}\nparameters {\n real mu;\n real<lower=0> tau;\n vector[J] eta;\n}\ntransformed parameters {\n vector[J] theta;\n theta = mu + tau * eta;\n}\nmodel {\n target += normal_lpdf(eta | 0, 1);\n target += normal_lpdf(y | theta, sigma);\n}"
attr(,"model_name2")
[1] "schools"
A readable version can be printed using cat
:
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
vector[J] eta;
}
transformed parameters {
vector[J] theta;
theta = mu + tau * eta;
}
model {
target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);
}
The get_inits
function returns initial values as a list with one component per chain. Each component is itself a (named) list containing the initial values for each parameter for the corresponding chain:
$mu
[1] 0.1486825
$tau
[1] 0.514061
$eta
[1] -0.5349054 0.2124741 1.4081679 0.3378652 0.3349618 0.3154013 -1.9600864
[8] -1.9206797
$theta
[1] -0.1262915 0.2579072 0.8725667 0.3223658 0.3208733 0.3108180 -0.8589215
[8] -0.8386640
The get_seed
function returns the (P)RNG seed as an integer:
[1] 1652741155
The get_elapsed_time
function returns a matrix with the warmup and sampling times for each chain:
warmup sample
chain:1 0.041 0.033
chain:2 0.034 0.032
chain:3 0.034 0.030
chain:4 0.035 0.032