In this vignette, we discuss how to specify multilevel models with
compositional outcomes using multilevelcoda
. In addition to
multilevelcoda
, we will use brms
package (to
fit models) and bayestestR
package (to compute useful
indices and compare models). We will also attach built in datasets
mcompd
(simulated compositional sleep and wake variables)
and sbp
(sequential binary partition).
library(multilevelcoda)
library(brms)
library(bayestestR)
data("mcompd")
data("sbp")
options(digits = 3)
The ILR coordinates outcomes can be calculated using the
compilr()
functions.
cilr <- compilr(data = mcompd, sbp = sbp,
parts = c("TST", "WAKE", "MVPA", "LPA", "SB"), idvar = "ID", total = 1440)
head(cilr$TotalILR)
#> ilr1 ilr2 ilr3 ilr4
#> [1,] 0.287 1.20 0.6270 1.702
#> [2,] -0.472 1.57 -0.8336 0.984
#> [3,] -0.486 1.33 1.3344 2.659
#> [4,] -0.316 1.37 -0.0332 0.551
#> [5,] 0.205 1.43 -0.6893 0.733
#> [6,] -0.446 1.16 -0.0950 0.670
#> attr(,"class")
#> [1] "rmult"
A model with multilevel compositional outcomes is multivariate, as it
has multiple ILR coordinate outcomes,each of which is predicted by a set
of predictors. Our brms
model can be then fitted using the
brmcoda()
function.
mv <- brmcoda(compilr = cilr,
formula = mvbind(ilr1, ilr2, ilr3, ilr4) ~ Stress + (1 | ID),
cores = 8, seed = 123, backend = "cmdstanr")
#> Warning: In the future, 'rescor' will be set to FALSE by default for all models. It is thus recommended to explicitely set 'rescor'
#> via 'set_rescor' instead of using the default.
Here is a summary()
of the model. We can see that stress
significantly predicted ilr1
and ilr2
.
summary(mv)
#> Family: MV(gaussian, gaussian, gaussian, gaussian)
#> Links: mu = identity; sigma = identity
#> mu = identity; sigma = identity
#> mu = identity; sigma = identity
#> mu = identity; sigma = identity
#> Formula: ilr1 ~ Stress + (1 | ID)
#> ilr2 ~ Stress + (1 | ID)
#> ilr3 ~ Stress + (1 | ID)
#> ilr4 ~ Stress + (1 | ID)
#> Data: tmp (Number of observations: 3540)
#> Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
#> total post-warmup draws = 4000
#>
#> Group-Level Effects:
#> ~ID (Number of levels: 266)
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> sd(ilr1_Intercept) 0.33 0.02 0.30 0.37 1.00 1203 1547
#> sd(ilr2_Intercept) 0.30 0.01 0.28 0.34 1.00 1097 2116
#> sd(ilr3_Intercept) 0.39 0.02 0.35 0.43 1.00 1594 2478
#> sd(ilr4_Intercept) 0.30 0.02 0.27 0.33 1.00 1687 2483
#>
#> Population-Level Effects:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> ilr1_Intercept -0.43 0.02 -0.48 -0.38 1.00 1089 1836
#> ilr2_Intercept 1.47 0.02 1.42 1.51 1.00 877 2029
#> ilr3_Intercept -0.87 0.03 -0.93 -0.82 1.00 1644 2583
#> ilr4_Intercept 0.65 0.02 0.60 0.70 1.00 1948 2670
#> ilr1_Stress -0.01 0.00 -0.02 -0.00 1.00 6441 3679
#> ilr2_Stress 0.01 0.00 0.00 0.01 1.00 5245 3596
#> ilr3_Stress 0.00 0.00 -0.01 0.01 1.00 6436 3519
#> ilr4_Stress 0.01 0.00 -0.00 0.01 1.00 6209 3303
#>
#> Family Specific Parameters:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> sigma_ilr1 0.44 0.01 0.43 0.45 1.00 5231 3458
#> sigma_ilr2 0.38 0.00 0.37 0.39 1.00 5176 3232
#> sigma_ilr3 0.70 0.01 0.68 0.71 1.00 5339 3388
#> sigma_ilr4 0.53 0.01 0.51 0.54 1.00 5250 3363
#>
#> Residual Correlations:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> rescor(ilr1,ilr2) -0.54 0.01 -0.57 -0.52 1.00 5202 3296
#> rescor(ilr1,ilr3) -0.18 0.02 -0.21 -0.14 1.00 4833 3061
#> rescor(ilr2,ilr3) -0.05 0.02 -0.09 -0.02 1.00 5156 3254
#> rescor(ilr1,ilr4) 0.11 0.02 0.07 0.14 1.00 4910 3445
#> rescor(ilr2,ilr4) -0.05 0.02 -0.08 -0.01 1.00 5286 3449
#> rescor(ilr3,ilr4) 0.56 0.01 0.53 0.58 1.00 5255 3316
#>