Package ‘mbbefd’

November 9, 2020

Type Package

Title Maxwell Boltzmann Bose Einstein Fermi Dirac Distribution and Destruction Rate Modelling

Version 0.8.9.1

Description Distributions that are typically used for exposure rating in general insurance, in particular to price reinsurance contracts. The vignette shows code snippets to fit the distribution to empirical data. See e.g. Bernegger (1997) <doi:10.2143/AST.27.1.563208>.

License GPL-2

Depends R (>= 3.6), fitdistrplus (>= 1.0-7), alabama, Rcpp (>= 0.12.18)

ByteCompile yes

Suggests testthat, pander, rmarkdown, knitr, lattice

LinkingTo Rcpp

Imports utils, actuar, gsl, MASS

URL https://github.com/spedygiorgio/mbbefd

BugReports https://github.com/spedygiorgio/mbbefd/issues

VignetteBuilder knitr

SystemRequirements GNU make

NeedsCompilation yes

RoxygenNote 6.0.1

Author Christophe Dutang [aut, cre] (<https://orcid.org/0000-0001-6732-1501>), Giorgio Spedicato [aut] (<https://orcid.org/0000-0002-0315-8888>), Markus Gesmann [ctb]

Maintainer Christophe Dutang <christophe.dutang@ensimag.fr>

Repository CRAN

Date/Publication 2020-11-09 21:40:09 UTC
R topics documented:

mbbefd-package .. 2
asiaomrisk .. 3
beaonre .. 5
bootDR ... 6
eecf ... 8
etl ... 9
exposureCurve ... 10
fitDR ... 11
g2a ... 14
gbeta .. 15
graph-eccomp ... 16
itagradescore .. 18
lossalae .. 19
mbbefd-distr ... 20
obeta .. 22
oidistribution .. 23
oigbeta .. 24
oistpareto .. 25
ouiunif ... 26
stpareto ... 28
swissRe .. 29

Index 31

mbbefd-package

Maxwell Boltzmann Bose Einstein Fermi Dirac Distribution and Destruction Rate Modelling

Description

The idea of this package emerged in 2013 from G.A. Spedicato who at this time worked in the area of quantitative risk assessment. In 2015, M. Gesmann and C. Dutang joined the project. This project is hosted at [github](https://github.com).

This package contains the core functions of the two parametrizations of the MBBEFD distribution (distribution function, density, quantile functions, random generation, aka d, p, q, r) as well as MBBEFD exposure curve (ec) and raw moments (m).

This package also provides other distributions used for destruction rate modelling, that is the beta, the shifted truncated Pareto and the generalized beta distributions. Due to the presence of a total loss, a one-inflated version of the previous distributions is also provided.

The vignette shows code snippets to fit the distribution to empirical data: Exposure rating, destruction rate models and the mbbefd package.
Details

Package: mbbefd
Type: Package
Version: 0.8.9.1
License: GPL-2

Author(s)
NA
Maintainer: NA

References

See Also

See `mbbefd-distr` for the MBBEFD distribution;
see `swissRe.exposureCurve` for exposure curves;
see `gbeta, stpareto` for finite-support distributions;
see `oidistribution, oibeta, oigbeta, oiunif, oistpareto` for one-inflated distributions.

Description

A completed project by the Insurance Risk and Finance Research Centre (www.IRFRC.com) has assembled a unique dataset from Large Commercial Risk losses in Asia-Pacific (APAC) covering the period 2000-2013. The data was generously contributed by one global reinsurance company and two large Lloyd’s syndicates in London. This dataset is the result of the project co-lead by Dr Milidonis (IRFRC and University of Cyprus) and Enrico Biffis (Imperial College Business School), which can be referred to as the IRFRC LCR Dataset.

As expected, the dataset is fully anonymized, as the LCR losses are aggregated along a few dimensions. First, data is categorized based on the World Bank’s economic development classification. This means that losses either come from developed or developing countries. The second dimension used to aggregate the data is the time period covered. Data is grouped into (at least) two time-periods: the period before and after the 2008 crisis.

A large commercial risk (LCR) is defined as a loss caused by man-made risks (e.g. fire, explosion, etc.). We exclude natural catastrophe events, and started by focusing on claims that made the data provider incur a loss amount of at least EUR 1 million. We then extended our dataset to
include claims leading to loss amounts smaller that EUR 1 million. Given time constraints, we only partially extended loss data by obtaining FGU losses larger than EUR 140k. One should note that any selection bias arising from the data collection exercise is driven by both data quality and reliability. Based on our experience, the latter two attributes are homogeneous across developed and developing countries APAC claims.

For further details, see the technical report: Benedetti, Biffis and Milidonis (2015a).

Usage
data(asiacomrisk)

Format

asiacomrisk contains 7 columns:

FGU From the Ground Up Loss (USD).
TIV Total Insurable Value (TIV) replaced with Total Sum Insured (TSI) when the TIV is not available (USD).
CountryStatus A character string for the country status: "Developed", "Emerging".
Usage A character string for the type of exposure hit by the loss: "Commercial", "Energy", "Manufacturing", "Misc.", "Residential".
DR A numeric for the destruction rate (FGU divided TIV capped to 1).

Source

http://irfrc.ntu.edu.sg/Research/completedprojects/Pages/Large-Commercial-Risks.aspx

References

Examples

(1) load of data
#
data(asiacomrisk)
dim(asiacomrisk)
beaonre

Description

The dataset was collected by the reinsurance broker AON Re Belgium and comprise 1,823 fire losses for which the building type and the sum insured are available.

Usage

```r
data(beaonre)
```

Format

beaonre contains three columns and 1823 rows:

- **BuildType** The building type either A, B, C, D, E or F.
- **ClaimCost** The loss amount in thousand of Danish Krone (DKK).
- **SumInsured** The sum insured in thousand of Danish Krone (DKK).

Source

References

Dataset used in Beirlant, Dierckx, Goegebeur and Matthys (1999), *Tail index estimation and an exponential regression model*, Extremes 2, 177-200.

Examples

```r
# (1) load of data
#
data(beaonre)

# (2) plot and description of data
#
```
boxplot(ClaimCost ~ BuildType, data=beaonre, log="y",
 xlab="Building type", ylab="Claim size", main="AON Re Belgium data")

bootDR

Bootstrap simulation of destruction rate models

Description

Uses parametric or nonparametric bootstrap resampling in order to simulate uncertainty in the parameters of the distribution fitted to destruction rate data. Generic methods are print, plot, summary.

Usage

```r
bootDR(f, bootmethod="param", niter=1001, silent=TRUE)
```

Arguments

- `f`: An object of class "fitDR", output of the `fitDR` function.
- `bootmethod`: A character string coding for the type of resampling: "param" for a parametric resampling and "nonparam" for a nonparametric resampling of data.
- `niter`: The number of samples drawn by bootstrap.
- `silent`: A logical to remove or show warnings and errors when bootstraping.

Details

Samples are drawn by parametric bootstrap (resampling from the distribution fitted by `fitDR`) or nonparametric bootstrap (resampling with replacement from the data set). On each bootstrap sample the estimation process is used to estimate bootstrapped values of parameters. When that function fails to converge, NA values are returned. Medians and 2.5 and 97.5 percentiles are computed by removing NA values.

This method returns an object of class "bootDR" inheriting from the "bootdist" class. Therefore the following generic methods are defined: print, plot, summary.

Value

`bootDR` returns an object of class "bootDR" inheriting from the "bootdist" class. That is a list with 6 components,

- `estim`: a data frame containing the bootstrapped values of parameters.
converg a vector containing the codes for convergence obtained if an iterative method is used to estimate parameters on each bootstrapped data set (and 0 if a closed formula is used).

method A character string coding for the type of resampling: "param" for a parametric resampling and "nonparam" for a nonparametric resampling.

nbboot The number of samples drawn by bootstrap.

CI bootstrap medians and 95 percent confidence percentile intervals of parameters.

fitpart The object of class "fitDR" on which the bootstrap procedure was applied.

Generic functions:

print The print of a "bootDR" object shows the bootstrap parameter estimates. If inferior to the whole number of bootstrap iterations, the number of iterations for which the estimation converges is also printed.

summary The summary provides the median and 2.5 and 97.5 percentiles of each parameter. If inferior to the whole number of bootstrap iterations, the number of iterations for which the estimation converges is also printed in the summary.

plot The plot shows the bootstrap estimates with stripchart function for univariate parameters and plot function for multivariate parameters.

Author(s)

Christophe Dutang

References

See Also

See mledist, mmmedist, qmedist, mgedist for details on parameter estimation. See bootdist for details on generic function. See fitDR for estimation procedures.

Examples

We choose a low number of bootstrap replicates in order to satisfy CRAN running times constraint.
For practical applications, we recommend to use at least niter=501 or niter=1001.
Empirical Exposure Curve Function

Description

Compute an empirical exposure curve function, with several methods for plotting, printing, computing with such an object.

Usage

eecf(x)

S3 method for class 'eecf'
plot(x, ..., ylab="Gn(x)", do.points=TRUE,
 col.01line = "gray70", pch = 19, main=NULL, ylim=NULL,
 add=FALSE)

S3 method for class 'eecf'
lines(x, ...)

S3 method for class 'eecf'
print(x, digits=getOption("digits") - 2, ...)

S3 method for class 'eecf'
summary(object, ...)

Arguments

x, object numeric vector of the observations for eecf; for the methods, an object of class "eecf".

... arguments to be passed to subsequent methods, e.g., to the plot method.

ylab label for the y-axis.

do.points logical; if TRUE, also draw points at the (xlim restricted) knot locations.

col.01line numeric or character specifying the color of the horizontal lines at y = 0 and 1, see colors.

pch plotting character.

main main title.

ylim the y limits of the plot.

add logical; if TRUE add to an already existing plot.

digits number of significant digits to use, see print.
etl

Details

Compute a continuous empirical exposure curve and returns an object of class "eecf" similar to what an object returned by ecdf.

Value

For eecf, a function of class "eecf", inheriting from the "function" class.

For the summary method, a summary of the knots of object with a "header" attribute.

Author(s)

Dutang Christophe

See Also

exposureCurve, ecdf.

Examples

x <- c(0.4756816, 0.1594636, 0.1913558, 0.2387725, 0.1135414, 0.7775612, 0.6858736, 0.4340655, 0.3181558, 0.1134244)
print
eecf(x)

summary
summary(eecf(x))

plot
plot(eecf(x))

lines
lines(eecf(x[1:4]), col="red")

etl

Empirical total loss

Description

Compute the empirical total loss.

Usage

etl(x, na.rm=FALSE)
Arguments

x numeric vector of the observations.
n = rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

Compute the empirical total loss defined as the proportion of full destruction rates, that is observations that equal 1.

Value

A numeric value or a vector.

Author(s)

Dutang Christophe

References

TODO

Examples

#TODO

exposureCurve

Exposure curves for the beta and the uniform distributions.

Description

An exposure curve is defined between x between 0 and 1 and represents the ratio of the limited expected value to unlimited expected value.

Usage

ecbeta(x, shape1, shape2)
ecunif(x, min = 0, max =1)

Arguments

x x value, percentage of damage to total loss
shape1, shape2 parameters for the beta distribution.
min, max parameters for the uniform distribution.
Details

td betc, tdcnif is the theoretical exposure curve function for beta and uniform distribution.

Value

A numeric value

Author(s)

Giorgio Spedicato Christophe Dutang

References

See Also

cebetafd and cecMBBF D are implemented in mbbefd dist. See also Uniform, Beta, swissRe.

Examples

```r
x <- 0.2
td beta(x, 2, 3)
td unif(x)
```

Description

Fit of univariate distributions to destruction rate data by maximum likelihood (mle), moment matching (mne), quantile matching (qme) or maximizing goodness-of-fit estimation (mge). The latter is also known as minimizing distance estimation. Generic methods are print, plot, summary, quantile, logLik, vcov and coef.

Usage

```r
fitDR(x, dist, method="mle", start=NULL, optim.method="default", ...)
```
Arguments

- **x**: A numeric vector.
- **dist**: A character string "name" naming a distribution among "oiunif", "oistpareto", "oibeta", "oigbeta", "mbbefd", "MBBEFD".
- **method**: A character string coding for the fitting method: "mle" for 'maximum likelihood estimation', "tlmme" for 'total-loss-moment matching estimation'.
- **start**: A named list giving the initial values of parameters of the named distribution or a function of data computing initial values and returning a named list. This argument may be omitted (default) for some distributions for which reasonable starting values are computed (see the 'details' section of `mledist`).
- **optim.method**: "default" or an optimization method to pass to `optim`.
- **...**: Further arguments to be passed to "fitdist" when method != "tlmme". See `fitdist` for details on parameter estimation.

Details

The fitted distribution (dist) has its d, p, q, r functions defined in the man page: `oiunif`, `oistpareto`, `oibeta`, `oigbeta`, `mbbefd`, `MBBEFD`.

The two possible fitting methods are described below:

When method="mle" Maximum likelihood estimation consists in maximizing the log-likelihood. A numerical optimization is carried out in `mledist` via `optim` to find the best values (see `mledist` for details). For one-inflated distributions, the probability parameter is estimated by a closed-form formula and other parameters use a two-optimization procedures.

When method="tlmme" Total loss and moment matching estimation consists in equalizing theoretical and empirical total loss as well as theoretical and empirical moments. The theoretical and the empirical moments are matched numerically, by minimization of the sum of squared differences between observed and theoretical quantities (see `mmedist` for details).

For one-inflated distributions, by default, direct optimization of the log-likelihood (or other criteria depending of the chosen method) is performed using `optim`, with the "L-BFGS-B" method for distributions characterized by more than one parameter and the "Brent" method for distributions characterized by only one parameter. Note that when errors are raised by `optim`, it's a good idea to start by adding traces during the optimization process by adding `control=list(trace=1,REPORT=1)`.

For the `MBBEFD` distribution, `constrOptim.nl` is used.

A pre-fitting process is carried out for the following distributions "mbbefd", "MBBEFD" and "oigbeta" before the main optimization.

The estimation process is carried out via `fitdist` from the `fitdistplus` package and the output object will inherit from the "fitdist" class. Therefore, the following generic methods are available: `print`, `plot`, `summary`, `quantile`, `logLik`, `vcov` and `coef`.

Value

fitDR returns an object of class "fitDR" inheriting from the "fitdist" class. That is a list with the following components:

- **estimate**: the parameter estimates.
method the character string coding for the fitting method: "mle" for 'maximum likelihood estimation', "tlmme" for 'matching total loss moment estimation'.

sd the estimated standard errors, NA if numerically not computable or NULL if not available.

cor the estimated correlation matrix, NA if numerically not computable or NULL if not available.

vcov the estimated variance-covariance matrix, NULL if not available.

loglik the log-likelihood.
aic the Akaike information criterion.
bic the the so-called BIC or SBC (Schwarz Bayesian criterion).
n the length of the data set.
data the data set.
distname the name of the distribution.
fix.arg the named list giving the values of parameters of the named distribution that must be kept fixed rather than estimated by maximum likelihood or NULL if there are no such parameters.

fix.arg.fun the function used to set the value of fix.arg or NULL.

discrete the input argument or the automatic definition by the function to be passed to functions gofstat, plotdist and cdfcomp.
dots the list of further arguments passed in ... to be used in bootdist in iterative calls to mledist, mmedist, qmedist, mgedist or NULL if no such arguments.

weights the vector of weights used in the estimation process or NULL.

Generic functions:

print The print of a "fitDR" object shows few traces about the fitting method and the fitted distribution.

summary The summary provides the parameter estimates of the fitted distribution, the log-likelihood, AIC and BIC statistics and when the maximum likelihood is used, the standard errors of the parameter estimates and the correlation matrix between parameter estimates.

plot The plot of an object of class "fitDR" returned by fitdist uses the function plotdist. An object of class "fitdist" or a list of objects of class "fitDR" corresponding to various fits using the same data set may also be plotted using a cdf plot (function cdfcomp), a density plot (function denscomp), a density Q-Q plot (function qqcomp), or a P-P plot (function ppcomp).

logLik Extracts the estimated log-likelihood from the "fitDR" object.

vcov Extracts the estimated var-covariance matrix from the "fitDR" object (only available when method = "mle").

coef Extracts the fitted coefficients from the "fitDR" object.

Author(s)

Christophe Dutang.
References

See Also

See mledist, mmmedist, for details on parameter estimation. See gofstat for goodness-of-fit statistics. See plotdist, graphcomp for graphs. See bootDR for bootstrap procedures See optim for base R optimization procedures. See quantile.fitdist, another generic function, which calculates quantiles from the fitted distribution. See quantile for base R quantile computation.

Examples

(1) fit of a one-inflated beta distribution by maximum likelihood estimation
#
n <- 1e3
set.seed(12345)
x <- roibeta(n, 3, 2, 1/6)
f1 <- fitDR(x, "oibeta", method="mle")
summary(f1)
plot(bootdist(f1, niter=11), enhance=TRUE, trueval=c(3, 2, 1/6))

g2a

Description

g2a returns the a parameter known g and b

Usage

g2a(g, b)

Arguments

g the g parameter
b the b parameter
Value

a real value

See Also

`mbbefd-distr`.

Examples

`g2a(10,2)`

gbeta

The generalized Beta of the first kind Distribution

Description

Density, distribution function, quantile function and random generation for the GB1 distribution with parameters shape0, shape1 and shape2.

Usage

```r
dgbeta(x, shape0, shape1, shape2, log = FALSE)
pgbeta(q, shape0, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
qgbeta(p, shape0, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rgbeta(n, shape0, shape1, shape2)
ecgbeta(x, shape0, shape1, shape2)
mgbeta(order, shape0, shape1, shape2)
```

Arguments

- `x, q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is taken to be the number required.
- `shape0, shape1, shape2` positive parameters of the GB1 distribution.
- `log, log.p` logical; if TRUE, probabilities p are given as log(p).
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.
- `order` order of the raw moment.

Details

The GB1 distribution with parameters shape0 = g, shape1 = a and shape2 = b has density

$$f(x) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a/g-1}(1 - x^{1/g})^{b-1}/g$$

for $a, b, g > 0$ and $0 \leq x \leq 1$ where the boundary values at $x = 0$ or $x = 1$ are defined as by continuity (as limits).
Value

dgbeta gives the density, pgbeta the distribution function, qgbeta the quantile function, and rgbeta generates random deviates.

References

See Also

Distributions for other standard distributions.

Examples

#TODO

description

Graphical comparison of multiple fitted distributions

eccomp plots the empirical exposure curve distribution against fitted exposure curve functions.

Usage

eccomp(ft, xlim, ylim, main, xlab, ylab, do.points=TRUE, datapch, datacol, fitlty, fitcol, addlegend = TRUE, legendtext, xlegend = "bottomright", ylegend = NULL, ...)

Arguments

ft One "DR" object or a list of objects of class "DR".
xlim The x-limits of the plot.
ylim The y-limits of the plot.
main A main title for the plot, see also title.
xlab A label for the x-axis, defaults to a description of x.
ylab A label for the y-axis, defaults to a description of y.
Given the data, the code for eccomp is:

```r
eccomp(data, fit, ...)  
```

where:

- `data` is a list of data frames, each containing the data for one fitted distribution.
- `fit` is a list of fitted distributions.
- `...` are further graphical arguments passed to graphical functions used in cdfcomp, denscomp, ppcomp and qqcomp.

Details

eccomp provides an exposure curve plot of each fitted distribution along with the eecf. By default, a legend is added to these plots. Many graphical arguments are optional, dedicated to personalize the plots, and fixed to default values if omitted.

Author(s)

Christophe Dutang.

See Also

See plot, legend, eecf.

Examples

```r
# (1)
```
Description

This dataset contains scores of an university admission test. The total score is subdivided into four areas (Italian, English, abstract reasoning, science). Each subitem can have a point of pass at the end.

Usage

```r
data(itagradescore)
```

Format

itagradescore contains 10 columns:

- **Number**: a numeric for the record number.
- **ID**: a factor for the identification code.
- **Correct**: A score of correct answers.
- **Wrong**: A score of wrong answers.
- **Null**: A score of null answers.
- **ItalianLanguage**: A score for the Italian language test.
- **EnglishLanguage**: A score for the English language test.
- **LogicalReasoning**: A score for the logic test.
- **Science**: A score for the science test.
- **TotalScore**: The sum of the four scores (i.e. four previous columns).

Source

Internal

Examples

```r
# (1) load of data
#
data(itagradescore)
dim(itagradescore)
```
General Liability Claims

Description

The lossalae is a data frame of 1500 rows and 4 columns containing 1,500 general liability claims randomly chosen from late settlement lags and were provided by Insurance Services Office, Inc. Each claim consists of an indemnity payment (the loss, X1) and an allocated loss adjustment expense (ALAE). ALAE are types of insurance company expenses that are specifically attributable to the settlement of individual claims such as lawyers’ fees and claims investigation expenses. The third column is the underwriting limit of the policy and the fourth column indicates a censored observation.

Usage

data(lossalaefull)

Format

lossalaefull contains four columns:

- **Loss** A numeric vector containing the indemnity payments (USD).
- **ALAE** A numeric vector containing the allocated loss adjustment expenses (USD).
- **Limit** A numeric vector containing the policy limit (USD).
- **Censored** A binary indicating that the payments are capped to their policy limit (USD).

Source

https://lstat.kuleuven.be/Wiley/

References

Examples

```r
# (1) load of data
#
data(lossalaefull)
```

The MBBEFD distribution (two parametrizations)

Description

These functions perform probabilistic analysis as well as random sampling on the MBBEFD distribution: the 1st parametrization MBBEFD(a,b) is implemented in \texttt{d,p,q,r}

\texttt{mbbefd}, the 2nd parametrization MBBEFD(g,b) is implemented in \texttt{d,p,q,r}

\texttt{MBBEFD}. We also provide raw moments, exposure curve function and total loss.

Usage

```r
dmbbefd(x, a, b, log=FALSE)
pmbbefd(q, a, b, lower.tail = TRUE, log.p = FALSE)
qmbbefd(p, a, b, lower.tail = TRUE, log.p = FALSE)
rmbbefd(n, a, b)
ecmbbefd(x, a, b)
mmmbefd(order, a, b)
tlmbbefd(a, b)
```

```r
dMBBEFD(x, g, b, log=FALSE)
pMBBEFD(q, g, b, lower.tail = TRUE, log.p = FALSE)
qMBBEFD(p, g, b, lower.tail = TRUE, log.p = FALSE)
rMBBEFD(n, g, b)
ecMBBEFD(x, g, b)
mMBBEFD(order, g, b)
tlMBBEFD(g, b)
```

Arguments

- `x`, `q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is take to be the number required.
- `a`, `b`, `g` shape parameters. For \texttt{mbbefd} functions, `g` is computed from `a`.
order of the raw moment.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \).

Details

it shall be remembered that \(g = \frac{1}{p_1} = \frac{a+b}{(a+1)b} \).

Value

A numeric value or a vector.

Author(s)

Giorgio Spedicato, Dutang Christophe

References

BERNEGGER, STEFAN. THE SWISS RE EXPOSURE CURVES AND THE MBBEF DISTRIBU-

See Also

swissRe, exposureCurve.

Examples

1st parametrization
#
aPar=0.2
bPar=0.04
rmbbefd(n=10,a=aPar,b=bPar) # for random generation
qmbbefd(p=0.7,a=aPar,b=bPar) # for quantiles
dmbbefd(x=0.5,a=aPar,b=bPar) # for density
pmbbefd(q=0.5,a=aPar,b=bPar) # for distribution function

2nd parametrization
#
gPar=2
bPar=0.04
rMBBEFD(n=10,g=gPar,b=bPar) # for random generation
qMBBEFD(p=0.7,g=gPar,b=bPar) # for quantiles
dMBBEFD(x=0.5,g=gPar,b=bPar) # for density
pMBBEFD(q=0.5,g=gPar,b=bPar) # for distribution function
Description

These functions perform probabilistic analysis as well as random sampling on one-inflated beta distribution.

Usage

```r
doibeta(x, shape1, shape2, p1, ncp=0, log=FALSE)
poibeta(q, shape1, shape2, p1, ncp=0, lower.tail = TRUE, log.p = FALSE)
qoibeta(p, shape1, shape2, p1, ncp=0, lower.tail = TRUE, log.p = FALSE)
roibeta(n, shape1, shape2, p1, ncp=0)
ecoibeta(x, shape1, shape2, p1, ncp=0)
moibeta(order, shape1, shape2, p1, ncp=0)
tloibeta(shape1, shape2, p1, ncp=0)
```

Arguments

- `x, q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is take to be the number required.
- `p1, shape1, shape2, ncp` parameters.
- `order` order of the raw moment.
- `log, log.p` logical; if TRUE, probabilities p are given as log(p).
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.

Details

d,p,q,ec,m,tl-oibeta functions computes the density function, the distribution function, the quantile function, the exposure curve function, raw moments and total loss of the one-inflated beta distribution. roibeta generates random variates of this distribution.

Value

A numeric value or a vector.

Author(s)

Dutang Christophe
See Also

mbbefd-distr and oidistribution.

Examples

#TODO

oidistribution One-inflated distributions

Description

These functions perform probabilistic analysis as well as random sampling on one-inflated distributions.

Usage

doifun(x, dfun, p1, log=FALSE, ...)
poifun(q, pfun, p1, lower.tail = TRUE, log.p = FALSE, ...)
qoifun(p, qfun, p1, lower.tail = TRUE, log.p = FALSE, ...)
roifun(n, rfun, p1, ...)
ecoifun(x, ecfun, mfun, p1, ...)
moifun(order, mfun, p1, ...)
tloifun(p1, ...)

Arguments

x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is take to be the number required.
dfun, pfun, qfun, rfun
d, p, q, r functions of the original distribution.
p1
parameter for the probability at x=1.
ecfun, mfun
exposure curve and moment functions which should have arguments x, ... and order, ... respectively.
order
order of the raw moment.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
...

Further arguments to pass to dfun, pfun, qfun, rfun, ecfun, mfun.
Details

d, p, q, ec, m, t1 functions of oifun computes the density function, the distribution function, the quantile function, the exposure curve function, raw moments and total loss of an one-inflated distribution of an original distribution specified by d, p, q, ec, m-fun. roifun generates random variates of the resulting distribution.

Value

A numeric value or a vector.

Author(s)

Dutang Christophe

See Also

oibeta, oifun, oistpareto and oidistribution.

Description

These functions perform probabilistic analysis as well as random sampling on one-inflated GB1 distribution.

Usage

doigbeta(x, shape0, shape1, shape2, p1, log=FALSE)
poigbeta(q, shape0, shape1, shape2, p1, lower.tail = TRUE, log.p = FALSE)
qoigbeta(p, shape0, shape1, shape2, p1, lower.tail = TRUE, log.p = FALSE)
roigbeta(n, shape0, shape1, shape2, p1)
ecoigbeta(x, shape0, shape1, shape2, p1)
moigbeta(order, shape0, shape1, shape2, p1)
tloigbeta(shape0, shape1, shape2, p1)

Arguments

x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is take to be the number required.
p1, shape0, shape1, shape2
shape parameters.
order order of the raw moment.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \).

Details
d,p,q,ec,m,tl-oigbeta functions computes the density function, the distribution function, the quantile function, the exposure curve function, raw moments and total loss of the one-inflated GB1 distribution. roigbeta generates random variates of this distribution.

Value
A numeric value or a vector.

Author(s)
Dutang Christophe

See Also
mbbefd-distr and oidistribution.

Examples
#TODO

oistpareto One-inflated shifted truncated pareto distribution

Description
These functions perform probabilistic analysis as well as random sampling on one-inflated shifted truncated pareto distribution.

Usage

doistpareto(x, a, p1, log=FALSE)
poistpareto(q, a, p1, lower.tail = TRUE, log.p = FALSE)
qoistpareto(p, a, p1, lower.tail = TRUE, log.p = FALSE)
roistpareto(n, a, p1)
ecoistpareto(x, a, p1)
moistpareto(order, a, p1)
tloistpareto(a, p1)
Arguments

- `x, q` vector of quantiles.
- `p` vector of probabilities.
- `n` number of observations. If `length(n) > 1`, the length is taken to be the number required.
- `a, p1` parameters.
- `order` order of the raw moment.
- `log, log.p` logical; if TRUE, probabilities `p` are given as `log(p)`.
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.

Details

d,p,q,ec,m,tl-oistpareto functions compute the density function, the distribution function, the quantile function, the exposure curve function, raw moments and total loss of the one-inflated shifted truncated Pareto distribution. roistpareto generates random variates of this distribution.

Value

A numeric value or a vector.

Author(s)

Dutang Christophe

See Also

mbbefd-distr and oidistribution.

Examples

#TODO

oiunif

One-inflated uniform distribution

Description

These functions perform probabilistic analysis as well as random sampling on one-inflated uniform distribution.
Usage

doiunif(x, p1, log=FALSE)
poiunif(q, p1, lower.tail = TRUE, log.p = FALSE)
qoiunif(p, p1, lower.tail = TRUE, log.p = FALSE)
roiunif(n, p1)
ecoiunif(x, p1)
omiunif(order, p1)
tloiunif(p1)

Arguments

x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is take to be the number
required.
p1
parameter.
order
order of the raw moment.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Details

d,p,q,ec,m,tl-oiunif functions computes the density function, the distribution function, the
quantile function, the exposure curve function, raw moments and total loss of the one-inflated uni-
form distribution. roiunif generates random variates of this distribution.

Value

A numeric value or a vector.

Author(s)

Dutang Christophe

See Also

mbbefd-distr and oidistribution.

Examples

#TODO
The shifted truncated Pareto distribution

Description

These functions perform probabilistic analysis as well as random sampling on the shifted truncated Pareto distribution.

Usage

```r
dstpareto(x, a, log=FALSE)
pstpareto(q, a, lower.tail = TRUE, log.p = FALSE)
qstpareto(p, a, lower.tail = TRUE, log.p = FALSE)
rstpareto(n, a)
mstpareto(order, a)
ecestpareto(x, a)
```

Arguments

- `x, q`: vector of quantiles.
- `p`: vector of probabilities.
- `n`: number of observations. If `length(n) > 1`, the length is taken to be the number required.
- `order`: order of the raw moment.
- `a`: shape parameter.
- `log, log.p`: logical; if `TRUE`, probabilities `p` are given as `log(p)`.
- `lower.tail`: logical; if `TRUE` (default), probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.

Details

TODO!

Value

A numeric value or a vector.

Author(s)

Dutang Christophe

References

TODO
swissRe

See Also
 mbbefd-distr, exposureCurve

Examples

 dstpareto(0:4/4, 2)
 pstpareto(0:4/4, 1/2)

swissRe

Swiss Re exposure curve generation function

Description

This function turns out the MBBEFD b and g parameters for the famous Swiss Re (SR) exposure curves.

Usage

```r
swissRe(c)
```

Arguments

- `c` A numeric value

Details

The four Swiss Re Y1-Y4 are defined for $c=1.5, 2, 3, 4$. In addition $c=5$ coincides with a curve used by Lloyds for industrial risks exposure rating.

Value

A named two dimensional vector

Author(s)

Giorgio Spedicato

References

See Also

 mbbefd-distr.
Examples

```r
pars <- swissRe(4)
losses <- rMBBEFD(n=1000,b=pars[1],g=pars[2])
mean(losses)
```
Index

* datasets
 asiacomrisk, 3
 beaonre, 5
 itagradescore, 18
 lossalae, 19

* distribution
 bootDR, 6
 fitDR, 11
 gbeta, 15
 graph-eccomp, 16
 oibeta, 22
 oidistribution, 23
 oigbeta, 24
 oistpareto, 25
 oiunif, 26
 stpareto, 28

* package
 mbbefd-package, 2

asiacomrisk, 3
beaonre, 5
Beta, 11
bootdist, 7, 13
bootDR, 6, 14
cdfcomp, 13
colors, 8
constrOptim.nl, 12
denscomp, 13
dgbeta (gbeta), 15
dgbetal (gbeta), 15
Distributions, 16
dMBBEFD (mbbefd-distr), 20
dmbbefd (mbbefd-distr), 20
dMBBEFDF1 (mbbefd-distr), 20
dmbbefdf1 (mbbefd-distr), 20
dMBBEFDF2 (mbbefd-distr), 20
dmbbefdf2 (mbbefd-distr), 20
doibeta (oibeta), 22
doifun (oidistribution), 23
doigbeta (oibeta), 24
doistpareto (oistpareto), 25
doiunif (oiunif), 26
dstpareto (stpareto), 28
ecbeta (exposureCurve), 10
eccomp (graph-eccomp), 16
ecdf, 9
ecgbeta (gbeta), 15
ecmBBefd (mbbefd-distr), 20
ecmbbefd (mbbefd-distr), 20
ecoibeta (oibeta), 22
ecoifun (oidistribution), 23
ecoigbeta (oibeta), 24
ecoistpareto (oistpareto), 25
coiunif (oiunif), 26
ecstpareto (stpareto), 28
ecuinif (exposureCurve), 10
eecf, 8, 17
etl, 9
exposureCurve, 3, 9, 10, 21, 29
fitdist, 12
fitDR, 6, 7, 11
g2a, 14
gbeta, 3, 15
gofstat, 13, 14
graph-eccomp, 16
graphcomp, 14
itagradescore, 18
legend, 17
lines.eecf (eecf), 8
lossalae, 19
lossalaefull (lossalae), 19
MBBEFD, 12
INDEX

MBBEFD (mbbefd-distr), 20
mbbefd, 12
mbbefd (mbbefd-package), 2
mbbefd-distr, 20
mbbefd-package, 2
mgbetapack (gbeta), 15
mgedist, 7, 13
mledist, 7, 12–14
mMBBEFD (mbbefd-distr), 20
mmbefd (mbbefd-distr), 20
mmmedist, 7, 12–14
moibeta (oibeta), 22
moifun (oidistribution), 23
moigbeta (oigbeta), 24
moistpareto (oistpareto), 25
moiunif (oiunif), 26
mstpareto (stpareto), 28

oibeta, 3, 12, 22, 24
oidistribution, 3, 23, 24–27
oigbeta, 3, 12, 24
oistpareto, 3, 12, 24, 25
oiunif, 3, 12, 24, 26
optim, 12, 14
par, 17
pgbeta (gbeta), 15
plot, 7, 17
plot.eecf (eecf), 8
plotdist, 13, 14
pMBBEFD (mbbefd-distr), 20
pmbbefd (mbbefd-distr), 20
poibeta (oibeta), 22
poifun (oidistribution), 23
poigbeta (oigbeta), 24
points, 17
poistpareto (oistpareto), 25
poiunif (oiunif), 26
ppcomp, 13
print, 8
print.eecf (eecf), 8
pstpareto (stpareto), 28

qgbeta (gbeta), 15
qMBBEFD (mbbefd-distr), 20
qmbbefd (mbbefd-distr), 20
qmedist, 7, 13
qoibeta (oibeta), 22
qoifun (oidistribution), 23
qoigbeta (oigbeta), 24
qoistpareto (oistpareto), 25
qoiunif (oiunif), 26
qqcomp, 13
qstpareto (stpareto), 28
quantile, 14
quantile.fitdist, 14

rgbeta (gbeta), 15
rMBBEFD (mbbefd-distr), 20
rmbbefd (mbbefd-distr), 20
roibeta (oibeta), 22
roifun (oidistribution), 23
roigbeta (oigbeta), 24
roistpareto (oistpareto), 25
roiunif (oiunif), 26
rstpareto (stpareto), 28

stpareto, 3, 28
stripchart, 7
summary.eecf (eecf), 8
swissRe, 3, 11, 21, 29

title, 16
tlMBBEFD (mbbefd-distr), 20
tlmbbefd (mbbefd-distr), 20
tloibeta (oibeta), 22
tloifun (oidistribution), 23
lroigbeta (oigbeta), 24
tloistpareto (oistpareto), 25
tloiunif (oiunif), 26

Uniform, 11