bayesCureRateModel: Bayesian Cure Rate Modeling for Time-to-Event Data

A fully Bayesian approach in order to estimate a general family of cure rate models under the presence of covariates, see Papastamoulis and Milienos (2024) <doi:10.1007/s11749-024-00942-w>. The promotion time can be modelled (a) parametrically using typical distributional assumptions for time to event data (including the Weibull, Exponential, Gompertz, log-Logistic distributions), or (b) semiparametrically using finite mixtures of distributions. In both cases, user-defined families of distributions are allowed under some specific requirements. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis-Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution.

Version: 1.2
Depends: R (≥ 3.5.0)
Imports: Rcpp (≥ 1.0.12), survival, doParallel, parallel, foreach, mclust, coda, HDInterval, VGAM, calculus, flexsurv
LinkingTo: Rcpp, RcppArmadillo
Published: 2024-09-14
DOI: 10.32614/CRAN.package.bayesCureRateModel
Author: Panagiotis Papastamoulis ORCID iD [aut, cre], Fotios Milienos ORCID iD [aut]
Maintainer: Panagiotis Papastamoulis <papapast at yahoo.gr>
License: GPL-2
URL: https://github.com/mqbssppe/Bayesian_cure_rate_model
NeedsCompilation: yes
Citation: bayesCureRateModel citation info
CRAN checks: bayesCureRateModel results

Documentation:

Reference manual: bayesCureRateModel.pdf

Downloads:

Package source: bayesCureRateModel_1.2.tar.gz
Windows binaries: r-devel: bayesCureRateModel_1.2.zip, r-release: bayesCureRateModel_1.2.zip, r-oldrel: bayesCureRateModel_1.2.zip
macOS binaries: r-release (arm64): bayesCureRateModel_1.2.tgz, r-oldrel (arm64): bayesCureRateModel_1.2.tgz, r-release (x86_64): bayesCureRateModel_1.2.tgz, r-oldrel (x86_64): bayesCureRateModel_1.2.tgz
Old sources: bayesCureRateModel archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bayesCureRateModel to link to this page.