
Package ‘SFSI’
October 12, 2022

Title Sparse Family and Selection Index

Version 1.2.0

Date 2022-08-16

Description Here we provide tools for the estimation of coefficients in
penalized regressions when the (co)variance matrix of predictors
and the covariance vector between predictors and response, are
provided. These methods are extended to the context of a Selection Index
(commonly used for breeding value prediction). The approaches offer
opportunities such as the integration of high-throughput traits in genetic
evaluations ('Lopez-Cruz et al., 2020') <doi:10.1038/s41598-020-65011-2>
and solutions for training set optimization in Genomic Prediction
('Lopez-Cruz & de los Campos, 2021') <doi:10.1093/genetics/iyab030>.

LazyLoad true

Depends R (>= 3.5)

Imports stats

Suggests BGLR, Matrix, float, knitr, rmarkdown, ggplot2, parallel,
reshape2, viridis, igraph

LinkingTo float

VignetteBuilder knitr

Encoding UTF-8

License GPL-3

NeedsCompilation yes

Author Marco Lopez-Cruz [aut, cre],
Gustavo de los Campos [aut],
Paulino Perez-Rodriguez [ctb]

Maintainer Marco Lopez-Cruz <maraloc@gmail.com>

Repository CRAN

Date/Publication 2022-08-16 15:40:09 UTC

1

https://doi.org/10.1038/s41598-020-65011-2
https://doi.org/10.1093/genetics/iyab030

2 BinaryFiles

R topics documented:
BinaryFiles . 2
collect . 3
covariance_matrix . 4
fitBLUP . 6
getGenCov . 9
LARS . 11
Methods_LASSO . 14
Methods_SSI . 16
net.plot . 18
path.plot . 20
solveEN . 21
SSI . 25
wheat . 30

Index 33

BinaryFiles Binary files

Description

Save/read a numeric data as a fortran-formatted binary file at a defined precision (single or double).

Usage

saveBinary(X, file = paste0(tempdir(), "/file.bin"),
precision.format = c("double","single"),
verbose = TRUE)

readBinary(file = paste0(tempdir(), "/file.bin"),
index.row = NULL, index.col = NULL,
verbose = TRUE)

Arguments

X (numeric matrix) Data to save

file (character) Name of the binary file to save/read
precision.format

(character) Either ’single’ or ’double’ for single (4 bytes) or double precision (8
bytes), respectively, that matrix to save will occupy

index.row (integer vector) Which rows are to be read from the file. Default index.row=NULL
will read all the rows

index.col (integer vector) Which columns are to be read from the file. Default index.col=NULL
will read all the columns

verbose TRUE or FALSE to whether printing file information

collect 3

Value

Function ’saveBinary’ does not return any value but print a description of the file saved.

Function ’readBinary’ returns the data that was read.

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)

Simulate matrix
X = matrix(rnorm(5000),ncol=5)
head(X)

Save matrix as double-precision
saveBinary(X,paste0(tempdir(),"/Matrix1.bin"),precision.format="double")

Save matrix as single-precision
saveBinary(X,paste0(tempdir(),"/Matrix2.bin"),precision.format="single")

Read the double-precision matrix
X2 = readBinary(paste0(tempdir(),"/Matrix1.bin"))
head(X2)
max(abs(X-X2)) # No loss of precision
object.size(X2) # Size of the object

Read the single-precision matrix
X3 = readBinary(paste0(tempdir(),"/Matrix2.bin"))
head(X3)
max(abs(X-X3)) # Loss of precision
object.size(X3) # But smaller-size object

Read specific rows and columns
index.row = c(2,4,5,8,10)
index.col = c(1,2,5)
X2 = readBinary(paste0(tempdir(),"/Matrix1.bin"),index.row=index.row,index.col=index.col)
X2
Equal to:
X[index.row,index.col]

collect collect function

Description

Collects all outputs saved at the provided saveAt parameter from the SSI analysis when testing data
was splited according to argument subset.

4 covariance_matrix

Usage

collect(prefix = "")

Arguments

prefix (character) Prefix that was added to the output files name, this may include a
path

Value

An object of the class ’SSI’ for which methods fitted, plot and summary exist

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Response variable

Training and testing sets
tst = which(Y$trial == 2)
trn = which(Y$trial != 2)

prefix <- paste0(tempdir(),"/testSSI")

Run the analysis into 4 subsets and save them at a given prefix
fm <- SSI(y,K=G,tst=tst,trn=trn,subset=c(1,4),save.at=prefix)
fm <- SSI(y,K=G,tst=tst,trn=trn,subset=c(2,4),save.at=prefix)
fm <- SSI(y,K=G,tst=tst,trn=trn,subset=c(3,4),save.at=prefix)
fm <- SSI(y,K=G,tst=tst,trn=trn,subset=c(4,4),save.at=prefix)

Collect all results after completion
fm <- collect(prefix)

covariance_matrix Conversion of a covariance matrix to a distance or correlation matrix

Description

Computes a correlation matrix or a Euclidean distance matrix from a covariance matrix

covariance_matrix 5

Usage

cov2dist(V, void = FALSE)

cov2cor2(V, a = 1, void = FALSE)

Arguments

V (numeric matrix) Symmetric variance-covariance matrix among p variables. It
can be of the "float32" type as per the ’float’ R-package

void TRUE or FALSE to whether return or not return the output. When FALSE no result
is displayed but the input V is modified. Default void=FALSE

a (numeric) A number to multiply the whole resulting matrix by. Default a=1

Details

For any variables Xi and Xj with mean zero and with sample vectors xi = (xi1, ..., xin)′ and
xj = (xj1, ..., xjn)′ , their (sample) variances are equal (up-to a constant) to their cross-products,
this is, var(Xi) = x′ixi and var(Xj) = x′jxj . Likewise, the covariance is cov(Xi, Xj) = x′ixj .

Distance. The square of the distance d(Xi, Xj) between the variables expressed in terms of cross-
products is

d2(Xi, Xj) = x′ixi + x′jxj − 2x′ixj

Therefore, the output (square) distance matrix will contain as off-diagonal entries

d2(Xi, Xj) = var(Xi) + var(Xj)− 2cov(Xi, Xj)

while in the diagonal, the distance between one variable with itself is d2(Xi, Xi) = 0

Correlation. The correlation between the variables is obtained from variances and covariances as

cor(Xi, Xj) = cov(Xi, Xj)/(sd(Xi)sd(Xj))

where sd(Xi) =
√
var(Xi); while in the diagonal, the correlation between one variable with itself

is cor(Xi, Xi) = 1

Variances are obtained from the diagonal values while covariances are obtained from the out-
diagonal.

Value

Function ’cov2dist’ returns a matrix containing the (square) Euclidean distances. Function ’cov2cor2’
returns a correlation matrix

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

6 fitBLUP

Examples

require(SFSI)
data(wheatHTP)

X = scale(Y[,4:7])
(V = crossprod(X)) # Covariance matrix

Covariance matrix to distance matrix
(D1 = cov2dist(V))
it must equal (but faster) to:
D0 = as.matrix(dist(t(X)))^2
max(abs(D0-D1))

Covariance to a correlation matrix
(R1 = cov2cor2(V))
it must equal (but faster) to:
R0 = cov2cor(V)
max(abs(R0-R1))

if(requireNamespace("float")){
Using a 'float' type variable
V2 = float::fl(V)
D2 = cov2dist(V2)
max(abs(D1-D2)) # discrepancy with previous matrix
R2 = cov2cor2(V2)
max(abs(R1-R2)) # discrepancy with previous matrix
}

Using void=TRUE
cov2dist(V,void=TRUE)
V # notice that V was modified
cov2dist(V2,void=TRUE)
V2 # notice that V2 was modified

fitBLUP Function fitBLUP

Description

Solves the Linear Mixed Model and calculates the Best Linear Unbiased Predictor (BLUP)

Usage

fitBLUP(y, X = NULL, Z = NULL, K = NULL, U = NULL,
d = NULL, theta = NULL, BLUP = TRUE,
method = c("REML","ML"), return.Hinv = FALSE,
tol = 1E-5, maxiter = 1000, interval = c(1E-9,1E9),
warn = TRUE)

fitBLUP 7

Arguments

y (numeric vector) Response variable

X (numeric matrix) Design matrix for fixed effects. When X=NULL a vector of ones
is constructed only for the intercept (default)

Z (numeric matrix) Design matrix for random effects. When Z=NULL an identity
matrix is considered (default) thus G = K; otherwise G = Z K Z’ is used

K (numeric matrix) Kinship relationships. This can be of the "float32" type as per
the ’float’ R-package, or a (character) name of a binary file where the matrix is
stored

U (numeric matrix) Eigenvectors from spectral value decomposition of G = U D U’

d (numeric vector) Eigenvalues from spectral value decomposition of G = U D U’

theta (numeric) Residual/genetic variances ratio. When it is not NULL, the optimiza-
tion of the likelihood function (REML or ML) is not performed

BLUP TRUE or FALSE to whether return the random effects estimates

method (character) Either ’REML’ (Restricted Maximum Likelihood) or ’ML’ (Maxi-
mum Likelihood)

return.Hinv TRUE or FALSE to whether return the inverse of the matrix H

tol (numeric) Maximum error between two consecutive solutions (convergence tol-
erance) when finding the root of the log-likelihood’s first derivative

maxiter (integer) Maximum number of iterations to run before convergence is reached

interval (numeric vector) Range of values in which the root is searched

warn TRUE or FALSE to whether show warnings

Details

The basic linear mixed model that relates phenotypes with genetic values is of the form

y = Xb + Zu + e

where y is a vector with the response, b is the vector of fixed effects, u is the vector of the (random)
genetic values of the genotypes, e is the vector of environmental residuals (random error), and X
and Z are design matrices conecting the fixed and genetic effects with replicates. Genetic values
are assumed to follow a Normal distribution as u ∼ N(0, σ2

uK), and the error terms are assumed
e ∼ N(0, σ2

eD), with D = I being an identity matrix.

The vector of genetic values g = Zu will therefore follow g ∼ N(0, σ2
uG) where G = ZKZ′. In

the un-replicated case, Z = I is an identity matrix, and hence g = u and G = K.

The predicted values utrn = (ui), i = 1, 2, ..., ntrn, corresponding to observed data (training set)
are derived as

utst = H(ytrn − Xtrnb)

where H is a matrix of weights given by

8 fitBLUP

H = Gtrn(Gtrn + θD)−1

where Gtrn is the sub-matrix corresponding to the training set, and θ = σ2
e/σ

2
u is the resid-

ual/genetic variances ratio representing a shrinkage parameter. This parameter is expressed in terms
of the heritability, h2 = σ2

u/(σ
2
u + σ2

e), as θ = (1− h2)/h2.

The predictions of utst corresponding to un-observed data (testing set) can be obtained by using

H = Gtst,trn(Gtrn + θD)−1

where Gtst,trn is the sub-matrix of G corresponding to the testing set (in rows) and training set (in
columns).

Solutions are found using the GEMMA (Genome-wide Efficient Mixed Model Analysis) approach
(Zhou & Stephens, 2012). First, the Brent’s method is implemented to solve for the genetic/residual
variances ratio (i.e., 1/θ) from the first derivative of the log-likelihood (either REML or ML). Then,
variances σ2

u and σ2
e are calculated. Finally, b is obtained using Generalized Least Squares.

Value

Returns a list object that contains the elements:

• b: (vector) fixed effects solutions (including the intercept).

• u: (vector) random effects solutions.

• varU: random effect variance.

• varE: residual variance.

• h2: heritability.

• convergence: (logical) whether Brent’s method converged.

• method: either ’REML’ or ’ML’ method used.

Author(s)

Paulino Perez-Rodriguez, Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

References

VanRaden PM (2008). Efficient methods to compute genomic predictions. Journal of Dairy Sci-
ence, 91(11), 4414–4423.

Zhou X, Stephens M (2012). Genome-wide efficient mixed-model analysis for association studies.
Nature Genetics, 44(7), 821-824

getGenCov 9

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable

Training and testing sets
tst = which(Y$trial == 2)
trn = which(Y$trial != 2)

yNA <- y
yNA[tst] <- NA
fm1 = fitBLUP(yNA, K=G)
plot(y[tst],fm1$u[tst]) # Predicted vs observed values in testing set
cor(y[tst],fm1$u[tst]) # Prediction accuracy in testing set
cor(y[trn],fm1$u[trn]) # Prediction accuracy in training set
fm1$theta # Residual/Genetic variances ratio
fm1$h2 # Heritability

if(requireNamespace("float")){
Using a 'float' type variable
G2 = float::fl(G)
fm2 = fitBLUP(yNA, K=G2)
max(abs(fm1$u-fm2$u)) # Check for discrepances
}

getGenCov Genetic covariances

Description

Pairwise genetic covariances for variables with the same experimental design and equal variance

Usage

getGenCov(y1, y2, X = NULL, Z = NULL, K = NULL,
U = NULL, d = NULL, scale = TRUE,
mc.cores = 1, warn = FALSE, ...)

Arguments

y1 (numeric vector) Response variable 1

y2 (numeric matrix) Response variable 2. The number of rows must be equal to
length of vector y1

10 getGenCov

X (numeric matrix) Design matrix for fixed effects. When X=NULL a vector of ones
is constructed only for the intercept (default)

Z (numeric matrix) Design matrix for random effects. When Z=NULL an identity
matrix is considered (default) thus G = K; otherwise G = Z K Z’ is used

K (numeric matrix) Kinship relationships

U (numeric matrix) Eigenvectors from spectral value decomposition of G = U D U’
d (numeric vector) Eigenvalues from spectral value decomposition of G = U D U’
scale TRUE or FALSE to scale y1 and y2 by their corresponding standard deviations so

the resulting variables will have unit variance

mc.cores (integer) Number of cores used. The analysis is run in parallel when mc.cores
is greater than 1. Default is mc.cores=1

warn TRUE or FALSE to whether show warnings

... Other arguments passed to the function ’fitBLUP’

Details

Assumes that both y1 and y2 follow the basic linear mixed model that relates phenotypes with
genetic values of the form

y1 = Xb1 + Zu1 + e1

y2 = Xb2 + Zu2 + e2

where b1 and b2 are the specific fixed effects, u1 and u2 are the specific genetic values of the
genotypes, e1 and e2 are the vectors of specific environmental residuals, and X and Z are common
design matrices conecting the fixed and genetic effects with replicates. Genetic values are assumed
to follow a Normal distribution as u1 ∼ N(0, σ2

u1
K) and u2 ∼ N(0, σ2

u2
K), and environmental

terms are assumed e1 ∼ N(0, σ2
e1I) and e2 ∼ N(0, σ2

e2I).

The genetic covariance σ2
u1u2

is estimated from the formula for the variance for the sum of two
variables as

σ2
u1u2

=
1

2
(σ2

u3
− σ2

u1
− σ2

u2
)

where σ2
u3

is the genetic variance of the variable y3 = y1 + y2 that also follows the same model as
for y1 and y2.

Likewise, the environmental covariance σ2
e1e2 is estimated as

σ2
e1e2 =

1

2
(σ2

e3 − σ
2
e1 − σ

2
e2)

where σ2
e3 is the error variance of the variable y3.

Solutions are found using the function ’fitBLUP’ (see help(fitBLUP)) to sequentialy fit mixed
models for all the variables y1, y2 and y3.

LARS 11

Value

Returns a list object that contains the elements:

• varU1: genetic variance for response variable 1.

• varU2: (vector) genetic variances for response variable 2.

• varE1: error variance for response variable 1.

• varE2: (vector) error variances for response variable 2.

• covU: (vector) genetic covariances between response variables 1 and 2.

• covE: (vector) environmental covariances between response variables 1 and 2.

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
X = scale(X_E1[index,30:50]) # Subset reflectance data
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable

fm = getGenCov(y,X,K=G)

covU = fm$covU # Genetic covariance
covP_corrected = fm$covU+fm$covE # Phenotypic covariance
covP_uncorrected = cov(y,X) # Sample phenotypic covariance

plot(covP_corrected,covP_uncorrected)
plot(covU,covP_uncorrected)
plot(covU,covP_corrected)

LARS Least Angle Regression to solve LASSO-type problems

Description

Computes the entire LASSO solution for the regression coefficients, starting from zero, to the least-
squares estimates, via the Least Angle Regression (LARS) algorithm (Efron, 2004). It uses as inputs
a variance matrix among predictors and a covariance vector between response and predictors.

12 LARS

Usage

LARS(Sigma, Gamma, X =NULL, method=c("LAR","LAR-LASSO"),
dfmax = NULL, eps = .Machine$double.eps,
scale = TRUE, mc.cores = 1L, return.beta = TRUE,
save.beta = FALSE, verbose = FALSE)

Arguments

Sigma (numeric matrix) Variance-covariance matrix of predictors. It can be of the
"float32" type as per the ’float’ R-package

Gamma (numeric matrix) Covariance between response variable and predictors. If it con-
tains more than one column, the algorithm is applied to each column separately
as different response variables

X (numeric matrix) Optional matrix of predictors to obtain fitted values

method (character) Either:

• 'LAR': Computes the entire sequence of all coefficients. Values of lambdas
are calculated at each step.

• 'LAR-LASSO': Similar to 'LAR' but solutions when a predictor leaves the
solution are also returned.

Default is method='LAR'

dfmax (integer) Maximum number of non-zero coefficients in the last LARS solution.
Default dfmax=NULL will calculate solutions for the entire lambda sequence

eps (numeric) An effective zero. Default is the machine precision

scale TRUE or FALSE to scale matrix Sigma for variables with unit variance and scale
Gamma by the standard deviation of the corresponding predictor taken from the
diagonal of Sigma

mc.cores (integer) Number of cores used. The analysis is run in parallel when mc.cores
is greater than 1. Default is mc.cores=1

return.beta TRUE or FALSE to whether return regression coefficients in the output object

save.beta TRUE or FALSE to whether save regression coefficients (in a temporary folder).
When TRUE coefficients are not returned in the output object and instead the
path where coefficients were saved is returned. They can be retrieved using
coef method if at least one return.beta or save.beta is TRUE

verbose TRUE or FALSE to whether printing each LARS step

Details

Finds solutions for the regression coefficients in a linear model

yi = x′iβ + ei

where yi is the response for the ith observation, xi = (xi1, ..., xip)′ is a vector of p predictors
assumed to have unit variance, β = (β1, ..., βp)′ is a vector of regression coefficients, and ei is a
residual.

LARS 13

The regression coefficients β are estimated as function of the variance matrix among predictors (Σ)
and the covariance vector between response and predictors (Γ) by minimizing the penalized mean
squared error function

−Γ′β + 1/2β′Σβ + 1/2λ||β||1

where λ is the penalization parameter and ||β||1 =
∑p

j=1 |βj | is the L1-norm.

The algorithm to find solutions for each βj is fully described in Efron (2004) in which the "current
correlation" between the predictor xij and the residual ei = yi−x′iβ is expressed (up-to a constant)
as

rj = Γj −Σ′jβ

where Γj is the jth element of Γ and Σj is the jth column of the matrix Σ

Value

Returns a list object with the following elements:

• lambda: (vector) all the sequence of values of the LASSO penalty.

• beta: (matrix) regression coefficients for each predictor (in rows) associated to each value of
the penalization parameter lambda (in columns).

• df: (vector) degrees of freedom, number of non-zero predictors associated to each value of
lambda.

• yHat: (matrix) fitted values calculated using a matrix of predictors (when argument X is not
NULL), associated to each value of lambda (in columns).

The returned object is of the class ’LASSO’ for which methods fitted exist. Function path.plot
can be also used

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos. Adapted from the ’lars’
function in package ’lars’ (Hastie & Efron, 2013)

References

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). Least angle regression. The Annals of Statistics,
32(2), 407–499.

Friedman J, Hastie T, Tibshirani R(2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1), 1–22.

Hastie T, Efron B (2013). lars: least angle regression, Lasso and forward stagewise. https://
cran.r-project.org/package=lars.

Tibshirani R (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society B, 58(1), 267–288.

https://cran.r-project.org/package=lars
https://cran.r-project.org/package=lars

14 Methods_LASSO

Examples

require(SFSI)
data(wheatHTP)

y = as.vector(Y[,"E1"]) # Response variable
X = scale(X_E1) # Predictors

Training and testing sets
tst = which(Y$trial %in% 1:10)
trn = seq_along(y)[-tst]

Calculate covariances in training set
XtX = var(X[trn,])
Xty = cov(X[trn,],y[trn])

Run the penalized regression
fm1 = LARS(XtX,Xty,method="LAR-LASSO")

Predicted values
yHat1 = fitted(fm1, X=X[trn,]) # training data
yHat2 = fitted(fm1, X=X[tst,]) # testing data

Penalization vs correlation
plot(-log(fm1$lambda[-1]),cor(y[trn],yHat1[,-1]), main="training")
plot(-log(fm1$lambda[-1]),cor(y[tst],yHat2[,-1]), main="testing")

if(requireNamespace("float")){
Using a 'float' type variable
XtX2 = float::fl(XtX)
fm2 = LARS(XtX2,Xty,method="LAR-LASSO")
max(abs(fm1$beta-fm2$beta)) # Check for discrepances in beta
max(abs(fm1$lambda-fm2$lambda)) # Check for discrepances in lambda
}

Methods_LASSO LASSO methods

Description

Predicted values for a provided matrix of predictors X

Usage

S3 method for class 'LASSO'
coef(object, ..., i=NULL)

S3 method for class 'LASSO'
fitted(object, ...)

Methods_LASSO 15

Arguments

object An object of the class ’LASSO’ returned either by the function ’LARS’ or
’solveEN’

... Other arguments: X (numeric matrix) scores for as many predictors there are in
ncol(object$beta) (in columns) for a desired number n of observations (in
rows)

i (integer vector) Index columns of matrix ’Gamma’ to be considered

Value

Method coef returns a matrix that contains, for each value of lambda (in columns), the predicted
values corresponding to each row of the matrix X.

Method fitted returns fitted values Xβ

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)
data(wheatHTP)

y = as.vector(Y[,"E1"]) # Response variable
X = scale(X_E1) # Predictors

Training and testing sets
tst = which(Y$trial %in% 1:10)
trn = seq_along(y)[-tst]

Calculate covariances in training set
XtX = var(X[trn,])
Xty = cov(X[trn,],y[trn])

Run the penalized regression
fm = solveEN(XtX,Xty,alpha=0.5)

Regression coefficients
B = coef(fm)

Predicted values
yHat1 = fitted(fm, X=X[trn,]) # training data
yHat2 = fitted(fm, X=X[tst,]) # testing data

Penalization vs correlation
plot(-log(fm$lambda[-1]),cor(y[trn],yHat1[,-1]), main="training")
plot(-log(fm$lambda[-1]),cor(y[tst],yHat2[,-1]), main="testing")

16 Methods_SSI

Methods_SSI SSI methods

Description

Useful methods for retrieving, summarizing and visualizing important results from an object of the
class ’SSI’

Usage

S3 method for class 'SSI'
coef(object, ..., df=NULL, i=NULL)

S3 method for class 'SSI'
fitted(object, ...)

S3 method for class 'SSI'
summary(object, ...)

S3 method for class 'SSI'
plot(..., py=c("accuracy","MSE"), nbreaks.x=6)

Arguments

object An object of the class ’SSI’

... Arguments to be passed:

• One or more objects of the class ’SSI’ (for method plot)
• Other arguments for method plot: ’xlab’, ’ylab’, ’main’, ’lwd’, ’xlim’,

’ylim’
• An optional vector of observations y (with a similar heritability as the one

declared in ’SSI’ function) for methods summary, plot, and fitted

df (numeric) Average (across testing individuals) number of non-zero regression
coefficients

i (integer vector) Index testing elements (stored in object$tst) to be considered.
Default i=NULL will consider all elements in object$tst

py (character) Either ’accuracy’ (correlation between observed and predicted val-
ues) or ’MSE’ (mean squared error) to plot in the y-axis

nbreaks.x (integer) Number of breaks in the x-axis

Value

Method fitted returns a matrix with the predicted values for each individual in the testing set (in
rows) for each value of lambda (in columns).

Method coef (list of matrices) returns the regression coefficients for each testing set individual
(elements of the list). Each matrix contains the coefficients for each value of lambda (in rows)

Methods_SSI 17

associated to each training set individual (in columns). If tst is specified, the elements of the list
will correspond only to the testing individuals given in tst. If df is specified, only the coefficients
for the lambda associated to df are returned as a ’matrix’ with testing individuals in rows.

Method summary returns a list object containing:

• lambda: (vector) sequence of values of lambda used in the coefficients’ estimation.

• df: (vector) degrees of freedom (across testing individuals) at each solution associated to each
value of lambda.

• accuracy: (vector) correlation between observed and predicted values associated to each
value of lambda.

• MSE: (vector) mean squared error associated to each value of lambda.

• optCOR: (vector) summary of the SSI with maximum accuracy.

• optMSE: (vector) summary of the SSI with minimum MSE.

Method plot creates a plot of either accuracy or MSE versus the (average across testing individuals)
number of predictors (with non-zero regression coefficient) and versus lambda.

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable

Training and testing sets
tst = which(Y$trial == 2)
trn = which(Y$trial != 2)

fm1 = SSI(y,K=G,theta=1,b=0,tst=tst,trn=trn)

uHat = fitted(fm1) # Predicted values for each testing element
out = summary(fm1) # Useful function to get results
corTST = out$accuracy # Testing set accuracy (correlation cor(y,yHat))
out$optCOR # SSI with maximum accuracy
out$optMSE # SSI with minimum MSE
B = coef(fm1) # Regression coefficients for all tst
B = coef(fm1, i=1) # Regression coefficients for first tst (tst[1])
B = coef(fm1, df=10) # Regression coefficients for which df=10
plot(fm1,main=expression('corr('*y[obs]*','*y[pred]*') vs sparsity'))
plot(fm1,py="MSE",ylab='Mean Square Error', xlab='Sparsity')

18 net.plot

net.plot Network plot

Description

Network plot of testing and training individuals from an object of the class ’SSI’

Usage

net.plot(object, Z = NULL, K = NULL, i = NULL,
show.names = FALSE, group = NULL, group.shape = NULL,
set.color = NULL, set.size = NULL, df = NULL, main,
axis.labels = TRUE, curve = FALSE, bg.color = "white",
unified = TRUE, ntst = 36, line.color = "gray80",
line.tick = 0.3, legend.pos="right", point.color = "gray20",
sets = c("Testing","Supporting","Non-active"),
eps = .Machine$double.eps)

Arguments

object An object of the ’SSI’ class or a matrix of coefficients

Z (numeric matrix) Design matrix for random effects. When Z=NULL an identity
matrix is considered (default) thus G = K; otherwise G = Z K Z’ is used

K (numeric matrix) Kinship relationships. This can be a (character) name of a
binary file where the matrix is stored

i (integer vector) Index testing elements (stored in object$tst). Default i=NULL
will consider all elements in object$tst

group (data.frame) Column grouping for the individuals. The rows must match with
the rows in G matrix

df (numeric) Average number of training individuals contributing to the prediction
(active) of testing individuals. Default df=NULL will use the df that yielded the
optimal accuracy

main (character/expression) Title of the plot

bg.color (character) Plot background color

line.color (character) Color of lines connecting nodes in rows with those in columns

line.tick (numeric) Tick of lines connecting nodes in rows with those in columns

curve TRUE or FALSE to whether draw curve lines connecting nodes in rows with those
in columns

show.names TRUE or FALSE to whether show node names given by the row/column names of
either K or object (when this is a matrix)

set.color (character vector) Color point of each type of node: row, ’active’ column, and
’non-active’ column, respectively

net.plot 19

set.size (numeric vector) Size of each type of node: row, ’active’ column, and ’non-
active’ column, respectively

group.shape (integer vector) Shape of each level of the grouping column provided as group

axis.labels TRUE or FALSE to whether show labels in both axes

unified TRUE or FALSE to whether show an unified plot or separated for each individual
in ’testing’

point.color (character) Color of the points in the plot

ntst (integer) Maximum number of row nodes (’testing’) that are plotted separated
as indicated by unified=FALSE

legend.pos (character) Either "right", topright","bottomleft","bottomright","topleft", or "none"
indicating where the legend is positioned in the plot

sets (character vector) Names of the types of node: row, ’active’ column, and ’non-
active’ column, respectively

eps (numeric) Minumum value to declare nodes to be connected. Default is the
machine precision (numerical zero)

Details

Plot edges in the plane xy given by a numerical matrix. When the object is a ’SSI’ object the
edges are taken from the regression coefficients from the ’SSI’. Edges are plotted according to the
Fruchterman-Reingold algorithm. When a matrix K is provided, edges are plotted according to the
spectral value decomposition of Z K Z’ = U D U’

Value

Returns the top-2 PC’s plot connecting testing (predicted) individuals with training (predictors)
individuals

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable

Training and testing sets
tst = which(Y$trial == 2)
trn = which(Y$trial != 2)

fm = SSI(y,K=G,tst=tst,trn=trn)

20 path.plot

Basic setting
net.plot(fm)
net.plot(fm, i=c(1,2)) # Show the first 2 tst elements
net.plot(fm, show.names=c(TRUE,TRUE,FALSE), set.size=c(4,2,1), df=10)

Passing a matrix of coefficients
B = as.matrix(coef(fm, df=15))
net.plot(B, curve=TRUE, set.size=c(3.5,1.5,1))

path.plot Coefficients path plot

Description

Coefficients evolution path plot from an object of the class ’LASSO’ or ’SSI’

Usage

path.plot(object, Z = NULL, K = NULL,
i = NULL, prune = FALSE, cor.max = 0.97,
lambda.min = .Machine$double.eps^0.5,
nbreaks.x=6, ...)

Arguments

object An object of the ’LASSO’ or ’SSI’ class

Z (numeric matrix) Design matrix for random effects. When Z=NULL an identity
matrix is considered (default) thus G = K; otherwise G = Z K Z’ is used. Only
needed for a fm object of the class ’SSI’

K (numeric matrix) Kinship relationships. This can be a name of a binary file
where the matrix is stored. Only needed for a fm object of the class ’SSI’

i (integer vector) Index a response variable (columns of matrix Gamma) for an
object of the class ’LASSO’. Index testing elements (stored in object$tst) for
an object of the class ’SSI’. Default i=NULL will consider either all columns in
matrix Gamma or all elements in object$tst, respectively

prune TRUE or FALSE to whether prune within groups of correlated coefficients, keep-
ing only one per group. A group of coefficients that are highly correlated are
likely to overlap in the plot

cor.max (numeric) Correlation threshold to prune within groups of correlated coefficients

lambda.min (numeric) Minimum value of lambda to show in the plot as -log(lambda). This
prevents -log(lambda) going to infinite for near-zero lambda values

nbreaks.x (integer) Number of breaks in the x-axis

... Other arguments for method plot: ’xlab’, ’ylab’, ’main’, ’lwd’

solveEN 21

Value

Returns the plot of the coefficients’ evolution path along the regularization parameter

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
X = scale(X_E1[index,]) # Reflectance data
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,'E1'])) # Subset response variable

Sparse phenotypic regression
fm1 = LARS(var(X),cov(X,y))

Sparse family index
fm2 = SSI(y,K=G,tst=1:10,trn=11:50)

path.plot(fm1)
path.plot(fm2, prune=TRUE)
path.plot(fm2, K=G, prune=TRUE, cor.max=0.9)

Path plot for the first individual in testing set for the SSI
path.plot(fm2, K=G, i=1)

solveEN Coordinate Descent algorithm to solve Elastic-Net-type problems

Description

Computes the entire Elastic-Net solution for the regression coefficients for all values of the penal-
ization parameter, via the Coordinate Descent (CD) algorithm (Friedman, 2007). It uses as inputs a
variance matrix among predictors and a covariance vector between response and predictors

Usage

solveEN(Sigma, Gamma, X = NULL, alpha = 1, lambda = NULL,
nlambda = 100, common.lambda = TRUE,
lambda.min = .Machine$double.eps^0.5, dfmax = NULL,
scale = TRUE, tol = 1E-5, maxiter = 1000, mc.cores = 1L,
return.beta = TRUE, save.beta = FALSE, verbose = FALSE)

22 solveEN

Arguments

Sigma (numeric matrix) Variance-covariance matrix of predictors. It can be of the
"float32" type as per the ’float’ R-package

Gamma (numeric matrix) Covariance between response variable and predictors. If it con-
tains more than one column, the algorithm is applied to each column separately
as different response variables

X (numeric matrix) Optional matrix of predictors to obtain fitted values

lambda (numeric vector) Penalization parameter sequence. Default is lambda=NULL, in
this case a decreasing grid of 'nlambda' lambdas will be generated starting
from a maximum equal to

max(abs(Gamma)/alpha)

to a minimum equal to zero. If alpha=0 the grid is generated starting from a
maximum equal to 5

nlambda (integer) Number of lambdas generated when lambda=NULL

lambda.min (numeric) Minimum value of lambda that are generated when lambda=NULL

common.lambda TRUE or FALSE to whether computing the coefficients for a grid of lambdas com-
mon to all columns of Gamma or for a grid of lambdas specific to each column of
Gamma. Default is common.lambda=TRUE

alpha (numeric) Value between 0 and 1 for the weights given to the L1 and L2-
penalties

scale TRUE or FALSE to scale matrix Sigma for variables with unit variance and scale
Gamma by the standard deviation of the corresponding predictor taken from the
diagonal of Sigma

tol (numeric) Maximum error between two consecutive solutions of the CD algo-
rithm to declare convergence

maxiter (integer) Maximum number of iterations to run the CD algorithm at each lambda
step before convergence is reached

dfmax (integer) Maximum number of non-zero coefficients in the last solution. Default
dfmax=NULL will calculate solutions for the entire lambda grid

mc.cores (integer) Number of cores used. The analysis is run in parallel when mc.cores
is greater than 1. Default is mc.cores=1

return.beta TRUE or FALSE to whether return regression coefficients in the output object

save.beta TRUE or FALSE to whether save regression coefficients (in a temporary folder).
When TRUE coefficients are not returned in the output object and instead the
path where coefficients were saved is returned. They can be retrieved using
coef method if at least one return.beta or save.beta is TRUE

verbose TRUE or FALSE to whether printing progress

solveEN 23

Details

Finds solutions for the regression coefficients in a linear model

yi = x′iβ + ei

where yi is the response for the ith observation, xi = (xi1, ..., xip)′ is a vector of p predictors
assumed to have unit variance, β = (β1, ..., βp)′ is a vector of regression coefficients, and ei is a
residual.

The regression coefficients β are estimated as function of the variance matrix among predictors (Σ)
and the covariance vector between response and predictors (Γ) by minimizing the penalized mean
squared error function

−Γ′β + 1/2β′Σβ + λJ(β)

where λ is the penalization parameter and J(β) is a penalty function given by

1/2(1− α)||β||22 + α||β||1

where 0 ≤ α ≤ 1, and ||β||1 =
∑p

j=1 |βj | and ||β||22 =
∑p

j=1 β
2
j are the L1 and (squared)

L2-norms, respectively.

The "partial residual" excluding the contribution of the predictor xij is

e
(j)
i = yi − x′iβ + xijβj

then the ordinary least-squares (OLS) coefficient of xij on this residual is (up-to a constant)

β
(ols)
j = Γj −Σ′jβ + βj

where Γj is the jth element of Γ and Σj is the jth column of the matrix Σ.

Coefficients are updated for each j = 1, ..., p from their current value βj to a new value βj(α, λ),
given α and λ, by "soft-thresholding" their OLS estimate until convergence as fully described in
Friedman (2007).

Value

Returns a list object containing the elements:

• lambda: (vector) all the sequence of values of the penalty.

• beta: (matrix) regression coefficients for each predictor (in rows) associated to each value of
the penalization parameter lambda (in columns).

• df: (vector) degrees of freedom, number of non-zero predictors associated to each value of
lambda.

• yHat: (matrix) fitted values calculated using a matrix of predictors (when argument X is not
NULL), associated to each value of lambda (in columns).

The returned object is of the class ’LASSO’ for which methods coef and fitted exist. Function
’path.plot’ can be also used

24 solveEN

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

References

Friedman J, Hastie T, Höfling H, Tibshirani R (2007). Pathwise coordinate optimization. The
Annals of Applied Statistics, 1(2), 302–332.

Hoerl AE, Kennard RW (1970). Ridge Regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1), 55–67.

Tibshirani R (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society B, 58(1), 267–288.

Zou H, Hastie T (2005). Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society B, 67(2), 301–320.

Examples

require(SFSI)
data(wheatHTP)

y = as.vector(Y[,"E1"]) # Response variable
X = scale(X_E1) # Predictors

Training and testing sets
tst = which(Y$trial %in% 1:10)
trn = seq_along(y)[-tst]

Calculate covariances in training set
XtX = var(X[trn,])
Xty = cov(X[trn,],y[trn])

Run the penalized regression
fm1 = solveEN(XtX,Xty,alpha=0.5,nlambda=100)

Predicted values
yHat1 = fitted(fm1, X=X[trn,]) # training data
yHat2 = fitted(fm1, X=X[tst,]) # testing data

Penalization vs correlation
plot(-log(fm1$lambda[-1]),cor(y[trn],yHat1[,-1]), main="training")
plot(-log(fm1$lambda[-1]),cor(y[tst],yHat2[,-1]), main="testing")

if(requireNamespace("float")){
Using a 'float' type variable
XtX2 = float::fl(XtX)
fm2 = solveEN(XtX2,Xty,alpha=0.5)
max(abs(fm1$beta-fm2$beta)) # Check for discrepances in beta
}

SSI 25

SSI Sparse Selection Index

Description

Computes the entire Elastic-Net solution for the regression coefficients of a Selection Index for a
grid of values of the penalization parameter.

An optimal penalization can be chosen using cross-validation (CV) within a specific training set.

Usage

SSI(y, X = NULL, b = NULL, Z = NULL, K, D = NULL,
theta = NULL, h2 = NULL, trn = seq_along(y),
tst = seq_along(y), subset = NULL, alpha = 1, lambda = NULL,
nlambda = 100, lambda.min = .Machine$double.eps^0.5,
common.lambda = TRUE, tol = 1E-4, maxiter = 500,
method = c("REML","ML"), return.beta = FALSE, save.beta = TRUE,
save.at = NULL, name = NULL, mc.cores = 1, verbose = TRUE)

SSI.CV(y, X = NULL, b = NULL, Z = NULL, K, D = NULL,
theta = NULL, h2 = NULL, trn = seq_along(y), alpha = 1,
lambda = NULL, nlambda = 100, lambda.min = .Machine$double.eps^0.5,
nCV = 1, nfolds = 5, seed = NULL, common.lambda = TRUE,
tol = 1E-4, maxiter = 500, method = c("REML","ML"),
name = NULL, mc.cores = 1, verbose = TRUE)

Arguments

y (numeric vector) Response variable

X (numeric matrix) Design matrix for fixed effects. When X=NULL, a vector of ones
is constructed only for the intercept (default)

b (numeric vector) Fixed effects. When b=NULL, only the intercept is estimated
from training data using generalized least squares (default)

Z (numeric matrix) Design matrix for random effects. When Z=NULL an identity
matrix is considered (default) thus G = K; otherwise G = Z K Z’ is used

K (numeric matrix) Kinship relationships. This can be of the "float32" type as per
the ’float’ R-package, or a (character) name of a binary file where the matrix is
stored

D (numeric matrix) Relationships among residuals (usually an identity matrix).
When D=NULL an identity matrix is considered (default)

theta (numeric) Residual/genetic variances ratio. When theta=NULL (default), it is
calculated from training data using the function ’fitBLUP’ (see help(fitBLUP))

h2 (numeric) Heritability of the response variable. When h2=NULL (default), it is
calculated from training data using the function ’fitBLUP’ (see help(fitBLUP)).
It is used to set the residual/genetic variances ratio theta

26 SSI

trn (integer vector) Which elements from vector y are in training set. Default trn=seq_along(y)
will consider all individuals as training

tst (integer vector) Which elements from vector y are in testing set (prediction set).
Default tst=seq_along(y) will consider all individuals as testing

subset (integer vector) c(m,M) to fit the model only for the mth subset out of M sub-
sets that the testing set will be divided into. Results can be automatically saved
when saveAt argument is provided and can be retrieved later using function
’collect’ (see help(collect)). Default is subset=NULL for no subsetting, then
the model is fitted for all testing data

alpha (numeric) Value between 0 and 1 for the weights given to the L1 and L2-
penalties

lambda (numeric vector) Penalization parameter sequence. Default is lambda=NULL, in
this case a decreasing grid of nlambda lambdas will be generated starting from
a maximum equal to

max(abs(G[trn,tst])/alpha)

to a minimum equal to zero. If alpha=0 the grid is generated starting from a
maximum equal to 5

nlambda (integer) Number of lambdas generated when lambda=NULL

lambda.min (numeric) Minimum value of lambda in the generated grid when lambda=NULL

nfolds (integer/character) Either 2,3,5,10 or ’n’ indicating the number of non-overlaping
folds in which the data is split into to do cross-validation. When nfolds='n'
leave-one-out CV is performed

seed (numeric vector) Seed to fix randomization when creating folds for cross-validation.
If it is a vector, a number equal to its length of CV repetitions are performed

nCV (integer) Number of CV repetitions to be performed. Default is nCV=1

common.lambda TRUE or FALSE to whether computing the coefficients for a grid of lambdas com-
mon to all individuals in testing set or for a grid of lambdas specific to each
individual in testing set. Default is common.lambda=TRUE

mc.cores (integer) Number of cores used. The analysis is run in parallel when mc.cores
is greater than 1. Default is mc.cores=1

tol (numeric) Maximum error between two consecutive solutions of the CD algo-
rithm to declare convergence

maxiter (integer) Maximum number of iterations to run the CD algorithm at each lambda
step before convergence is reached

return.beta TRUE or FALSE to whether return regression coefficients in the output object

save.beta TRUE or FALSE to whether save regression coefficients. When TRUE coefficients
are not returned in the output object and instead the path where coefficients
were saved is returned. They can be retrieved using coef method if at least one
return.beta or save.beta is TRUE

save.at (character) Prefix name that will be added to the files (coefficients and output
object) name to be saved, this may include a path. Regression coefficients are
saved as a binary file (single-precision: 32 bits, 7 significant digits). Default
save.at=NULL will no save any output

SSI 27

method (character) Either ’REML’ (Restricted Maximum Likelihood) or ’ML’ (Max-
imum Likelihood) to calculate variance components as per the function ’fit-
BLUP’

name (character) Name given to the output for tagging purposes. Default name=NULL
will give the name of the method used

verbose TRUE or FALSE to whether printing each step

Details

The basic linear mixed model that relates phenotypes with genetic values is of the form

y = Xb + Zg + e

where y is a vector with the response, b is the vector of fixed effects, g is the vector of the genetic
values of the genotypes, e is the vector of environmental residuals, and X and Z are design matrices
conecting the fixed and genetic effects with replicates. Genetic values are assumed to follow a
Normal distribution as g ∼ N(0, σ2

uK), and environmental terms are assumed e ∼ N(0, σ2
eD),

usually D = I.

The resulting vector of genetic values u = Zg will therefore follow u ∼ N(0, σ2
uG) where G =

ZKZ′. In the un-replicated case, Z = I is an identity matrix, and hence u = g and G = K.

The values utst = (ui), i = 1, 2, ..., ntst, for a testing set are estimated individual-wise using (as
predictors) all available observations in a training set as

ui = β′i(ytrn − Xtrnb)

where βi is a vector of weights that are found separately for each individual in the testing set, by
minimizing the penalized mean squared error function

−G′trn,tst(i)βi + 1/2β′i(Gtrn + θD)βi + λJ(βi)

where Gtrn,tst(i) is the ith column of the sub-matrix of G whose rows correspond to the training
set and columns to the testing set; Gtrn is the sub-matrix corresponding to the training set; θ =
σ2
e/σ

2
u is the residual to genetic variance ratio that can be expressed in terms of the heritability,

h2 = σ2
u/(σ

2
u + σ2

e), as θ = (1 − h2)/h2; λ is the penalization parameter; and J(βi) is a penalty
function given by

1/2(1− α)||βi||22 + α||βi||1

where 0 ≤ α ≤ 1, and ||βi||1 =
∑ntrn

j=1 |βij | and ||βi||22 =
∑ntrn

j=1 β
2
ij are the L1 and (squared)

L2-norms, respectively.

Function ’SSI’ calculates each individual solution using the function ’solveEN’ (via the Coordinate
Descent algorithm, see help(solveEN)) by setting the argument Sigma equal to Gtrn + θD and
Gamma equal to Gtrn,tst(i).

Function ’SSI.CV’ performs cross-validation within the training data specified in argument trn.
Training data is divided into k folds and the SSI is sequentially calculated for (all individuals in)
one fold (as testing set) using information from the remaining folds (as training set).

28 SSI

Value

Function ’SSI’ returns a list object of the class ’SSI’ for which methods coef, fitted, plot, and
summary exist. Functions ’net.plot’ and ’path.plot’ can be also used. It contains the elements:

• b: (vector) fixed effects solutions (including the intercept).

• Xb: (vector) product of the design matrix ’X’ times the fixed effects solutions.

• u: (matrix) genetic values for testing individuals (in rows) associated to each value of lambda
(in columns).

• varU, varE, h2: variance components solutions.

• alpha: value for the elastic-net weights used.

• lambda: (matrix) sequence of values of lambda used (in columns) for each testing individual
(in rows).

• df: (matrix) degrees of freedom (number of non-zero predictors) at each solution given by
lambda for each testing individual (in rows).

• file_beta: path where regression coefficients are saved.

Function ’SSI.CV’ returns a list object of length nCV of the class ’SSI.CV’ for which methods plot
and summary exist. Each element is also a list containing the elements:

• b: (vector) solutions for the fixed effects (including the intercept) for each fold.

• varU, varE, h2: variance components estimated within each fold.

• folds: (matrix) assignation of training individuals to folds used for the cross-validation.

• accuracy: (matrix) correlation between observed and predicted values (in testing set) within
each fold (in rows).

• MSE: (matrix) mean squared error of prediction (in testing set) within each fold (in rows).

• lambda: (matrix) with the sequence of values of lambda used (averaged across individuals)
within each fold (in rows).

• df: (matrix) with the degrees of freedom (averaged across individuals) within each fold (in
rows).

Author(s)

Marco Lopez-Cruz (<maraloc@gmail.com>) and Gustavo de los Campos

References

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). Least angle regression. The Annals of Statistics,
32(2), 407–499.

Friedman J, Hastie T, Höfling H, Tibshirani R (2007). Pathwise coordinate optimization. The
Annals of Applied Statistics, 1(2), 302–332.

Hoerl AE, Kennard RW (1970). Ridge regression: biased estimation for nonorthogonal problems.
Technometrics, 12(1), 55–67.

Lush JL (1947). Family merit an individual merit as bases for selection. Part I. The American
Naturalist, 81(799), 241–261.

SSI 29

Tibshirani R (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society B, 58(1), 267–288.

VanRaden PM (2008). Efficient methods to compute genomic predictions. Journal of Dairy Sci-
ence, 91(11), 4414–4423.

Zou H, Hastie T (2005). Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society B, 67(2), 301–320

Examples

require(SFSI)
data(wheatHTP)

index = which(Y$trial %in% 1:6) # Use only a subset of data
Y = Y[index,]
M = scale(M[index,])/sqrt(ncol(M)) # Subset and scale markers
G = tcrossprod(M) # Genomic relationship matrix
y = as.vector(scale(Y[,"E1"])) # Scale response variable

Training and testing sets
tst = which(Y$trial == 2)
trn = which(Y$trial != 2)

Calculate variance components ratio using training data
yNA = y
yNA[tst] = NA
fm0 = fitBLUP(yNA,K=G)
theta = fm0$varE/fm0$varU
h2 = fm0$varU/(fm0$varU + fm0$varE)
b = fm0$b # intercept

Sparse selection index
fm1 = SSI(y,K=G,theta=theta,b=b,trn=trn,tst=tst)
summary(fm1)$optCOR

if(requireNamespace("float")){
Using a 'float' type variable for K
G2 = float::fl(G)
fm2 = SSI(y,K=G2,theta=theta,b=b,trn=trn,tst=tst)
summary(fm2)$optCOR # compare with above results
}

#---
Predicting a testing set using a value of lambda
obtained from cross-validation in a traning set
#---

Run a cross validation in training set
fm2 = SSI.CV(y,K=G,theta=theta,b=b,trn=trn,nfolds=5,name="1 5CV")
lambda = summary(fm2)$optCOR["lambda"]

Fit the index with the obtained lambda
fm3 = SSI(y,K=G,theta=theta,b=b,trn=trn,tst=tst,lambda=lambda)

30 wheat

summary(fm3)$accuracy # Testing set accuracy

Compare the accuracy with that of the non-sparse index (G-BLUP)
cor(fm0$u[tst],y[tst])

Obtain an 'optimal' lambda by repeating the CV several times
fm22 = SSI.CV(y,K=G,theta=theta,b=b,trn=trn,nCV=5,name="5 5CV")
plot(fm22,fm2)

wheat Wheat dataset

Description

The dataset consists of 1,092 inbred wheat lines grouped into 39 trials and grown during the 2013-
2014 season at the Norman Borlaug experimental research station in Ciudad Obregon, Sonora,
Mexico. Each trial consisted of 28 breeding lines that were arranged in an alpha-lattice design with
three replicates and six sub-blocks. The trials were grown in four different environments:

• E1: Flat-Drought (sowing in flat with irrigation of 180 mm through drip system)

• E2: Bed-2IR (sowing in bed with 2 irrigations approximately 250 mm)

• E3: Bed-5IR (bed sowing with 5 normal irrigations)

• E4: Bed-EHeat (bed sowing 30 days before optimal planting date with 5 normal irrigations
approximately 500 mm)

1. Phenotypic data. Measurements of grain yield (YLD) were reported as the total plot yield after
maturity. Records for YLD are reported as adjusted means from which trial, replicate and sub-
block effects were removed. Measurements for days to heading (DTH), days to maturity (DTM),
and plant height (PH) were recorded only in the first replicate at each trial and thus no phenotype
adjustment was made.

2. Reflectance data. Reflectance data was collected from the fields using both infrared and hyper-
spectral cameras mounted on an aircraft on 9 different dates (time-points) between January 10 and
March 27th, 2014. During each flight, data from 250 wavelengths ranging from 392 to 850 nm were
collected for each pixel in the pictures. The average reflectance of all the pixels for each wavelength
was calculated from each of the geo-referenced trial plots and reported as each line reflectance. Data
for reflectance and Green NDVI and Red NDVI are reported as adjusted phenotypes from which
trial, replicate and sub-block effects were removed. Each data-point matches to each data-point in
phenotypic data.

3. Marker data. Lines were sequenced for GBS at 192-plexing on Illumina HiSeq2000 or HiSeq2500
with 1 x 100 bp reads. SNPs were called across all lines anchored to the genome assembly of
Chinese Spring (International Wheat Genome Sequencing Consortium 2014). Next, SNP were ex-
tracted and filtered so that lines >50% missing data were removed. Markers were recoded as –1, 0,
and 1, corresponding to homozygous for the minor allele, heterozygous, and homozygous for the
major allele, respectively. Next, markers with a minor allele frequency <0.05 and >15% of missing
data were removed. Remaining SNPs with missing values were imputed using the mean of the
observed marker genotypes at a given locus.

wheat 31

Adjusted un-replicated data. The SFSI R-package includes the wheatHTP dataset containing (un-
replicated) only YLD from all environments E1,...,E4, and reflectance (latest time-point only) data
from the environment E1 only. Marker data is also included in the dataset. The phenotypic and
reflectance data are averages (line effects from mixed models) for 776 lines evaluated in 28 trials
(with at least 26 lines each) for which marker information on 3,438 SNPs is available.

The full (replicated) data for all four environments, all traits, and all time-points can be found in the
repository https://github.com/MarcooLopez/Data_for_Lopez-Cruz_et_al_2020.

Cross-validation partitions. One random partition of 4-folds was created for the 776 individuals
(distributed into 28 trials). Data from 7 entire trials (25% of 28 the trials) were arbitrarily assigned
to each of the 4 folds. The partition consist of an array of length 776 with indices 1, 2, 3, and 4
denoting the fold.

Genetic covariances. Multi-variate Gaussian mixed models were fitted to phenotypes. Bi-variate
models were fitted to YLD with each of the 250 wavelengths from environment E1. Tetra-variate
models were fitted for YLD from all environments. All models were fitted within each fold (pro-
vided partition) using scaled (null mean and unit variance) phenotypes from the remaining 3 folds as
training data. Bayesian models were implemented using the ’Multitrait’ function from the BGLR R-
package with 40,000 iterations discarding 5,000 runs for burning. A marker-derived relationships
matrix as in VanRaden (2008) was used to model between-individuals genetic effects. Between-
traits genetic covariances were assumed unstructured, while residual covariances were assumed
diagonal.

Genetic covariances between YLD and each wavelength (environment E1) are storaged in a matrix
of 250 rows and 4 columns (folds). Genetic and residual covariances matrices among YLD within
each environment are storaged in a list with 4 elements (folds).

Usage

data(wheatHTP)

Format

• Y: (matrix) phenotypic data for YLD in environments E1, E2, E3, and E4; and columns ’trial’
and ’CV’ (indicating the 4-folds partition).

• M: (matrix) marker data with SNPs in columns.

• X_E1: (matrix) reflectance data for time-point 9 in environment E1.

• VI_E1: (matrix) green and red NDVI for time-point 9 in environment E1.

• genCOV_xy: (matrix) genetic covariances between YLD and each reflectance trait, for each
fold (in columns).

• genCOV_yy: (4-dimensional list) genetic covariances matrices for YLD among environments,
for each fold.

• resCOV_yy: (4-dimensional list) residual covariances matrices for YLD among environments,
for each fold.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

https://github.com/MarcooLopez/Data_for_Lopez-Cruz_et_al_2020

32 wheat

References

Perez-Rodriguez P, de los Campos G (2014). Genome-wide regression and prediction with the
BGLR statistical package. Genetics, 198, 483–495.

VanRaden PM (2008). Efficient methods to compute genomic predictions. Journal of Dairy Sci-
ence, 91(11), 4414–4423.

Index

∗ LARS
LARS, 11

∗ SSI
SSI, 25

∗ datasets
wheat, 30

∗ fitBLUP
fitBLUP, 6
getGenCov, 9

∗ solveEN
solveEN, 21

BinaryFiles, 2

coef.LASSO (Methods_LASSO), 14
coef.SSI (Methods_SSI), 16
collect, 3
cov2cor2 (covariance_matrix), 4
cov2dist (covariance_matrix), 4
covariance_matrix, 4

fitBLUP, 6
fitted.LASSO (Methods_LASSO), 14
fitted.SSI (Methods_SSI), 16

genCOV_xy (wheat), 30
genCOV_yy (wheat), 30
getGenCov, 9

LARS, 11

M (wheat), 30
Methods_LASSO, 14
Methods_SSI, 16

net.plot, 18

path.plot, 20
plot.SSI (Methods_SSI), 16

readBinary (BinaryFiles), 2

resCOV_yy (wheat), 30

saveBinary (BinaryFiles), 2
solveEN, 21
SSI, 25
summary.SSI (Methods_SSI), 16

VI_E1 (wheat), 30

wheat, 30
wheatHTP (wheat), 30

X_E1 (wheat), 30

Y (wheat), 30

33

	BinaryFiles
	collect
	covariance_matrix
	fitBLUP
	getGenCov
	LARS
	Methods_LASSO
	Methods_SSI
	net.plot
	path.plot
	solveEN
	SSI
	wheat
	Index

