BayesianPlatformDesignTimeTrend

The goal of BayesianPlatformDesignTimeTrend is to simulates the multi-arm multi-stage or platform trial with Bayesian approach using the ‘rstan’ package, which provides the R interface for to the stan. The package uses Thall’s and Trippa’s randomisation approach for Bayesian adaptive randomisation. In addition, the time trend problem of platform trial can be studied in this package. There is a demo for multi-arm multi-stage trial for two different null scenario in this package.

Installation

You can install the ‘BayesianPlatformDesignTimeTrend’ package 1.1.1 like so:

# install.packages("BayesianPlatformDesignTimeTrend")
# devtools::install_github("ZXW834/PlatFormDesignTime", build_vignettes = TRUE)

Demo

Tutorials

Example

This is a basic example which shows you how to solve a common problem:

# library(BayesianPlatformDesignTimeTrend)
## basic example code
output=Trial.simulation(ntrials = 10000,
trial.fun = simulatetrial,
 input.info = list(
   response.probs = c(0.4, 0.4),
   ns = c(60, 120, 180, 240, 300),
   max.ar = 0.75,
   rand.algo = "Urn",
   max.deviation = 3,
   model.inf = list(
     model = "tlr",
     ibb.inf = list(
       pi.star = 0.5,
       pess = 2,
       betabinomialmodel = ibetabinomial.post
     ),
     tlr.inf = list(
       beta0_prior_mu = 0,
       beta1_prior_mu = 0,
       beta0_prior_sigma = 2.5,
       beta1_prior_sigma = 2.5,
       beta0_df = 7,
       beta1_df = 7,
       reg.inf =  "main",
       variable.inf = "Fixeffect"
     )
   ),
   Stopbound.inf = Stopboundinf(
     Stop.type = "Early-Pocock",
       Boundary.type = "Symmetric",
         cutoff = c(0.9925, 0.0075)
         ),
   Random.inf = list(
     Fixratio = FALSE,
     Fixratiocontrol = NA,
     BARmethod = "Thall",
     Thall.tuning.inf = list(tuningparameter = "Fixed",  fixvalue = 1)
   ),
   trend.inf = list(
     trend.type = "step",
     trend.effect = c(0, 0),
     trend_add_or_multip = "mult"
   )
 ),
 cl = 2)

Here is the operational characteristics table for previous single null scenario simulation.

output$OPC
#>  $OPC
#>                          Type.I.Error.or.Power       Bias        rMSE     N.per.arm.1
#>0404TimeTrend00stage5main                0.0444  0.0007538   0.3390904        146.4978
#>                          N.per.arm.2    Survive.per.arm.1    Survive.per.arm.2          N
#>0404TimeTrend00stage5main    146.7282               58.552              58.6241    293.226