CRAN Package Check Results for Package MixAll

Last updated on 2023-12-10 04:56:03 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.5.1 494.73 105.07 599.80 ERROR
r-devel-linux-x86_64-debian-gcc 1.5.1 401.15 81.01 482.16 NOTE
r-devel-linux-x86_64-fedora-clang 1.5.1 927.71 WARN
r-devel-linux-x86_64-fedora-gcc 1.5.1 1012.76 NOTE
r-devel-windows-x86_64 1.5.1 2.00 4.00 6.00 ERROR
r-patched-linux-x86_64 1.5.1 487.83 107.37 595.20 NOTE
r-release-linux-x86_64 1.5.1 485.46 109.46 594.92 NOTE
r-release-macos-arm64 1.5.1 250.00 NOTE
r-release-macos-x86_64 1.5.1 405.00 NOTE
r-release-windows-x86_64 1.5.1 3.00 5.00 8.00 ERROR
r-oldrel-macos-arm64 1.5.1 243.00 NOTE
r-oldrel-macos-x86_64 1.5.1 374.00 NOTE
r-oldrel-windows-x86_64 1.5.1 516.00 200.00 716.00 OK

Check Details

Version: 1.5.1
Check: whether package can be installed
Result: WARN Found the following significant warnings: ClusterLauncher.cpp:201:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] ClusterLauncher.cpp:291:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] KmmLauncher.cpp:283:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] KmmLauncher.cpp:392:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] LearnLauncher.cpp:202:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] LearnLauncher.cpp:289:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] See ‘/home/hornik/tmp/R.check/r-devel-clang/Work/PKGS/MixAll.Rcheck/00install.out’ for details. * used C compiler: ‘Debian clang version 17.0.5 (1)’ * used C++ compiler: ‘Debian clang version 17.0.5 (1)’ Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.1
Check: C++ specification
Result: NOTE Specified C++11: please drop specification unless essential Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64

Version: 1.5.1
Check: Rd files
Result: NOTE checkRd: (-1) clusterAlgo.Rd:26: Lost braces; missing escapes or markup? 26 | \item \code{EM} {The Expectation Maximisation algorithm} | ^ checkRd: (-1) clusterAlgo.Rd:27: Lost braces; missing escapes or markup? 27 | \item \code{CEM} {The Classification EM algorithm} | ^ checkRd: (-1) clusterAlgo.Rd:28: Lost braces; missing escapes or markup? 28 | \item \code{SEM} {The Stochastic EM algorithm} | ^ checkRd: (-1) clusterAlgo.Rd:29: Lost braces; missing escapes or markup? 29 | \item \code{SemiSEM} {The Semi-Stochastic EM algorithm} | ^ checkRd: (-1) clusterAlgo.Rd:33: Lost braces; missing escapes or markup? 33 | \item \code{nbIteration} {Set the maximum number of iterations.} | ^ checkRd: (-1) clusterAlgo.Rd:34: Lost braces; missing escapes or markup? 34 | \item \code{epsilon} {Set relative increase of the log-likelihood criterion.} | ^ checkRd: (-1) clusterInit.Rd:34: Lost braces; missing escapes or markup? 34 | \item \code{random} {The initial parameters of the mixture are chosen randomly.} | ^ checkRd: (-1) clusterInit.Rd:35: Lost braces; missing escapes or markup? 35 | \item \code{class} {The initial membership of individuals are sampled randomly.} | ^ checkRd: (-1) clusterInit.Rd:36-37: Lost braces 36 | \item \code{fuzzy} {The initial probabilities of membership of individuals are | ^ checkRd: (-1) learnAlgo.Rd:27: Lost braces; missing escapes or markup? 27 | \item \code{Impute} {Impute the missing values during the iterations} | ^ checkRd: (-1) learnAlgo.Rd:28: Lost braces; missing escapes or markup? 28 | \item \code{Simul} {Simulate the missing values during the iterations} | ^ checkRd: (-1) learnAlgo.Rd:32: Lost braces; missing escapes or markup? 32 | \item \code{nbIteration} {Set the maximum number of iterations.} | ^ checkRd: (-1) learnAlgo.Rd:33: Lost braces; missing escapes or markup? 33 | \item \code{epsilon} {Set relative increase of the log-likelihood criterion.} | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.5.1
Check: tests
Result: ERROR Running ‘ClusterSimul.R’ [0s/1s] Running ‘clusterDiagGaussianLikelihood.R’ [1s/2s] Running ‘clusterGammaLikelihood.R’ [1s/2s] Running ‘simulHeterogeneous.R’ [0s/0s] Running ‘simulNonLinear.R’ [1s/1s] Running ‘testAllLearners.R’ [1s/2s] Running ‘testPoissonExample.R’ [1s/2s] Running ‘testPredict.R’ [7s/9s] Running the tests in ‘tests/testAllLearners.R’ failed. Complete output: > library(MixAll) Loading required package: rtkore Loading required package: Rcpp Attaching package: 'rtkore' The following object is masked from 'package:Rcpp': LdFlags > ## get data and target from iris data set > data(iris) > x <- as.matrix(iris[,1:4]); z <- as.vector(iris[,5]); n <- nrow(x); p <- ncol(x) > ## add missing values at random > indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2) > cbind(indexes, x[indexes]) [,1] [,2] [,3] [1,] 123 1 7.7 [2,] 44 4 0.6 [3,] 56 4 1.3 [4,] 5 3 1.4 [5,] 11 3 1.5 > x[indexes] <- NA > ## learn continuous model > model <- learnDiagGaussian( data=x, labels= z, prop = c(1/3,1/3,1/3) + , models = clusterDiagGaussianNames(prop = "equal") + , algo = "simul", nbIter = 2, epsilon = 1e-08 + ) > missingValues(model) row col value 1 123 1 6.24570571 2 5 3 1.55829071 3 11 3 1.15596516 4 44 4 -0.06993778 5 56 4 1.00855002 > print(model) **************************************** * model name = gaussian_p_sj * data = Sepal.Length Sepal.Width Petal.Length Petal.Width [1,] 5.10000000 3.50000000 1.40000000 0.20000000 [2,] 4.90000000 3.00000000 1.40000000 0.20000000 [3,] 4.70000000 3.20000000 1.30000000 0.20000000 [4,] 4.60000000 3.10000000 1.50000000 0.20000000 [5,] 5.00000000 3.60000000 1.55829071 0.20000000 [6,] 5.40000000 3.90000000 1.70000000 0.40000000 [7,] 4.60000000 3.40000000 1.40000000 0.30000000 [8,] 5.00000000 3.40000000 1.50000000 0.20000000 [9,] 4.40000000 2.90000000 1.40000000 0.20000000 [10,] 4.90000000 3.10000000 1.50000000 0.10000000 [11,] 5.40000000 3.70000000 1.15596516 0.20000000 [12,] 4.80000000 3.40000000 1.60000000 0.20000000 [13,] 4.80000000 3.00000000 1.40000000 0.10000000 [14,] 4.30000000 3.00000000 1.10000000 0.10000000 [15,] 5.80000000 4.00000000 1.20000000 0.20000000 [16,] 5.70000000 4.40000000 1.50000000 0.40000000 [17,] 5.40000000 3.90000000 1.30000000 0.40000000 [18,] 5.10000000 3.50000000 1.40000000 0.30000000 [19,] 5.70000000 3.80000000 1.70000000 0.30000000 [20,] 5.10000000 3.80000000 1.50000000 0.30000000 [21,] 5.40000000 3.40000000 1.70000000 0.20000000 [22,] 5.10000000 3.70000000 1.50000000 0.40000000 [23,] 4.60000000 3.60000000 1.00000000 0.20000000 [24,] 5.10000000 3.30000000 1.70000000 0.50000000 [25,] 4.80000000 3.40000000 1.90000000 0.20000000 [26,] 5.00000000 3.00000000 1.60000000 0.20000000 [27,] 5.00000000 3.40000000 1.60000000 0.40000000 [28,] 5.20000000 3.50000000 1.50000000 0.20000000 [29,] 5.20000000 3.40000000 1.40000000 0.20000000 [30,] 4.70000000 3.20000000 1.60000000 0.20000000 [31,] 4.80000000 3.10000000 1.60000000 0.20000000 [32,] 5.40000000 3.40000000 1.50000000 0.40000000 [33,] 5.20000000 4.10000000 1.50000000 0.10000000 [34,] 5.50000000 4.20000000 1.40000000 0.20000000 [35,] 4.90000000 3.10000000 1.50000000 0.20000000 [36,] 5.00000000 3.20000000 1.20000000 0.20000000 [37,] 5.50000000 3.50000000 1.30000000 0.20000000 [38,] 4.90000000 3.60000000 1.40000000 0.10000000 [39,] 4.40000000 3.00000000 1.30000000 0.20000000 [40,] 5.10000000 3.40000000 1.50000000 0.20000000 [41,] 5.00000000 3.50000000 1.30000000 0.30000000 [42,] 4.50000000 2.30000000 1.30000000 0.30000000 [43,] 4.40000000 3.20000000 1.30000000 0.20000000 [44,] 5.00000000 3.50000000 1.60000000 -0.06993778 [45,] 5.10000000 3.80000000 1.90000000 0.40000000 [46,] 4.80000000 3.00000000 1.40000000 0.30000000 [47,] 5.10000000 3.80000000 1.60000000 0.20000000 [48,] 4.60000000 3.20000000 1.40000000 0.20000000 [49,] 5.30000000 3.70000000 1.50000000 0.20000000 [50,] 5.00000000 3.30000000 1.40000000 0.20000000 [51,] 7.00000000 3.20000000 4.70000000 1.40000000 [52,] 6.40000000 3.20000000 4.50000000 1.50000000 [53,] 6.90000000 3.10000000 4.90000000 1.50000000 [54,] 5.50000000 2.30000000 4.00000000 1.30000000 [55,] 6.50000000 2.80000000 4.60000000 1.50000000 [56,] 5.70000000 2.80000000 4.50000000 1.00855002 [57,] 6.30000000 3.30000000 4.70000000 1.60000000 [58,] 4.90000000 2.40000000 3.30000000 1.00000000 [59,] 6.60000000 2.90000000 4.60000000 1.30000000 [60,] 5.20000000 2.70000000 3.90000000 1.40000000 [61,] 5.00000000 2.00000000 3.50000000 1.00000000 [62,] 5.90000000 3.00000000 4.20000000 1.50000000 [63,] 6.00000000 2.20000000 4.00000000 1.00000000 [64,] 6.10000000 2.90000000 4.70000000 1.40000000 [65,] 5.60000000 2.90000000 3.60000000 1.30000000 [66,] 6.70000000 3.10000000 4.40000000 1.40000000 [67,] 5.60000000 3.00000000 4.50000000 1.50000000 [68,] 5.80000000 2.70000000 4.10000000 1.00000000 [69,] 6.20000000 2.20000000 4.50000000 1.50000000 [70,] 5.60000000 2.50000000 3.90000000 1.10000000 [71,] 5.90000000 3.20000000 4.80000000 1.80000000 [72,] 6.10000000 2.80000000 4.00000000 1.30000000 [73,] 6.30000000 2.50000000 4.90000000 1.50000000 [74,] 6.10000000 2.80000000 4.70000000 1.20000000 [75,] 6.40000000 2.90000000 4.30000000 1.30000000 [76,] 6.60000000 3.00000000 4.40000000 1.40000000 [77,] 6.80000000 2.80000000 4.80000000 1.40000000 [78,] 6.70000000 3.00000000 5.00000000 1.70000000 [79,] 6.00000000 2.90000000 4.50000000 1.50000000 [80,] 5.70000000 2.60000000 3.50000000 1.00000000 [81,] 5.50000000 2.40000000 3.80000000 1.10000000 [82,] 5.50000000 2.40000000 3.70000000 1.00000000 [83,] 5.80000000 2.70000000 3.90000000 1.20000000 [84,] 6.00000000 2.70000000 5.10000000 1.60000000 [85,] 5.40000000 3.00000000 4.50000000 1.50000000 [86,] 6.00000000 3.40000000 4.50000000 1.60000000 [87,] 6.70000000 3.10000000 4.70000000 1.50000000 [88,] 6.30000000 2.30000000 4.40000000 1.30000000 [89,] 5.60000000 3.00000000 4.10000000 1.30000000 [90,] 5.50000000 2.50000000 4.00000000 1.30000000 [91,] 5.50000000 2.60000000 4.40000000 1.20000000 [92,] 6.10000000 3.00000000 4.60000000 1.40000000 [93,] 5.80000000 2.60000000 4.00000000 1.20000000 [94,] 5.00000000 2.30000000 3.30000000 1.00000000 [95,] 5.60000000 2.70000000 4.20000000 1.30000000 [96,] 5.70000000 3.00000000 4.20000000 1.20000000 [97,] 5.70000000 2.90000000 4.20000000 1.30000000 [98,] 6.20000000 2.90000000 4.30000000 1.30000000 [99,] 5.10000000 2.50000000 3.00000000 1.10000000 [100,] 5.70000000 2.80000000 4.10000000 1.30000000 [101,] 6.30000000 3.30000000 6.00000000 2.50000000 [102,] 5.80000000 2.70000000 5.10000000 1.90000000 [103,] 7.10000000 3.00000000 5.90000000 2.10000000 [104,] 6.30000000 2.90000000 5.60000000 1.80000000 [105,] 6.50000000 3.00000000 5.80000000 2.20000000 [106,] 7.60000000 3.00000000 6.60000000 2.10000000 [107,] 4.90000000 2.50000000 4.50000000 1.70000000 [108,] 7.30000000 2.90000000 6.30000000 1.80000000 [109,] 6.70000000 2.50000000 5.80000000 1.80000000 [110,] 7.20000000 3.60000000 6.10000000 2.50000000 [111,] 6.50000000 3.20000000 5.10000000 2.00000000 [112,] 6.40000000 2.70000000 5.30000000 1.90000000 [113,] 6.80000000 3.00000000 5.50000000 2.10000000 [114,] 5.70000000 2.50000000 5.00000000 2.00000000 [115,] 5.80000000 2.80000000 5.10000000 2.40000000 [116,] 6.40000000 3.20000000 5.30000000 2.30000000 [117,] 6.50000000 3.00000000 5.50000000 1.80000000 [118,] 7.70000000 3.80000000 6.70000000 2.20000000 [119,] 7.70000000 2.60000000 6.90000000 2.30000000 [120,] 6.00000000 2.20000000 5.00000000 1.50000000 [121,] 6.90000000 3.20000000 5.70000000 2.30000000 [122,] 5.60000000 2.80000000 4.90000000 2.00000000 [123,] 6.24570571 2.80000000 6.70000000 2.00000000 [124,] 6.30000000 2.70000000 4.90000000 1.80000000 [125,] 6.70000000 3.30000000 5.70000000 2.10000000 [126,] 7.20000000 3.20000000 6.00000000 1.80000000 [127,] 6.20000000 2.80000000 4.80000000 1.80000000 [128,] 6.10000000 3.00000000 4.90000000 1.80000000 [129,] 6.40000000 2.80000000 5.60000000 2.10000000 [130,] 7.20000000 3.00000000 5.80000000 1.60000000 [131,] 7.40000000 2.80000000 6.10000000 1.90000000 [132,] 7.90000000 3.80000000 6.40000000 2.00000000 [133,] 6.40000000 2.80000000 5.60000000 2.20000000 [134,] 6.30000000 2.80000000 5.10000000 1.50000000 [135,] 6.10000000 2.60000000 5.60000000 1.40000000 [136,] 7.70000000 3.00000000 6.10000000 2.30000000 [137,] 6.30000000 3.40000000 5.60000000 2.40000000 [138,] 6.40000000 3.10000000 5.50000000 1.80000000 [139,] 6.00000000 3.00000000 4.80000000 1.80000000 [140,] 6.90000000 3.10000000 5.40000000 2.10000000 [141,] 6.70000000 3.10000000 5.60000000 2.40000000 [142,] 6.90000000 3.10000000 5.10000000 2.30000000 [143,] 5.80000000 2.70000000 5.10000000 1.90000000 [144,] 6.80000000 3.20000000 5.90000000 2.30000000 [145,] 6.70000000 3.30000000 5.70000000 2.50000000 [146,] 6.70000000 3.00000000 5.20000000 2.30000000 [147,] 6.30000000 2.50000000 5.00000000 1.90000000 [148,] 6.50000000 3.00000000 5.20000000 2.00000000 [149,] 6.20000000 3.40000000 5.40000000 2.30000000 [150,] 5.90000000 3.00000000 5.10000000 1.80000000 * missing = row col [1,] 123 1 [2,] 5 3 [3,] 11 3 [4,] 44 4 [5,] 56 4 * nbSample = 150 * nbCluster = 3 * lnLikelihood = -1013.786 * nbFreeParameter= 70 * criterion name = ICL * criterion value= 2385.587 * zi = [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [149] 2 2 **************************************** *** Cluster: 1 * Proportion = 0.3333333 * Means = 5.0060000 3.4280000 1.4582851 0.2326012 * S.D. = 0.5019596 0.3362737 0.4267673 0.2036422 **************************************** *** Cluster: 2 * Proportion = 0.3333333 * Means = 5.936000 2.770000 4.260000 1.320171 * S.D. = 0.5019596 0.3362737 0.4267673 0.2036422 **************************************** *** Cluster: 3 * Proportion = 0.3333333 * Means = 6.558914 2.974000 5.552000 2.026000 * S.D. = 0.5019596 0.3362737 0.4267673 0.2036422 **************************************** > model <- learnDiagGaussian( data=x, labels= z, + , models = clusterDiagGaussianNames(prop = "equal") + , algo = "impute", nbIter = 2, epsilon = 1e-08) > missingValues(model) row col value > print(model) **************************************** * model name = gaussian_p_sjk * data = Sepal.Length Sepal.Width Petal.Length Petal.Width [1,] 5.10000000 3.50000000 1.40000000 0.20000000 [2,] 4.90000000 3.00000000 1.40000000 0.20000000 [3,] 4.70000000 3.20000000 1.30000000 0.20000000 [4,] 4.60000000 3.10000000 1.50000000 0.20000000 [5,] 5.00000000 3.60000000 1.55829071 0.20000000 [6,] 5.40000000 3.90000000 1.70000000 0.40000000 [7,] 4.60000000 3.40000000 1.40000000 0.30000000 [8,] 5.00000000 3.40000000 1.50000000 0.20000000 [9,] 4.40000000 2.90000000 1.40000000 0.20000000 [10,] 4.90000000 3.10000000 1.50000000 0.10000000 [11,] 5.40000000 3.70000000 1.15596516 0.20000000 [12,] 4.80000000 3.40000000 1.60000000 0.20000000 [13,] 4.80000000 3.00000000 1.40000000 0.10000000 [14,] 4.30000000 3.00000000 1.10000000 0.10000000 [15,] 5.80000000 4.00000000 1.20000000 0.20000000 [16,] 5.70000000 4.40000000 1.50000000 0.40000000 [17,] 5.40000000 3.90000000 1.30000000 0.40000000 [18,] 5.10000000 3.50000000 1.40000000 0.30000000 [19,] 5.70000000 3.80000000 1.70000000 0.30000000 [20,] 5.10000000 3.80000000 1.50000000 0.30000000 [21,] 5.40000000 3.40000000 1.70000000 0.20000000 [22,] 5.10000000 3.70000000 1.50000000 0.40000000 [23,] 4.60000000 3.60000000 1.00000000 0.20000000 [24,] 5.10000000 3.30000000 1.70000000 0.50000000 [25,] 4.80000000 3.40000000 1.90000000 0.20000000 [26,] 5.00000000 3.00000000 1.60000000 0.20000000 [27,] 5.00000000 3.40000000 1.60000000 0.40000000 [28,] 5.20000000 3.50000000 1.50000000 0.20000000 [29,] 5.20000000 3.40000000 1.40000000 0.20000000 [30,] 4.70000000 3.20000000 1.60000000 0.20000000 [31,] 4.80000000 3.10000000 1.60000000 0.20000000 [32,] 5.40000000 3.40000000 1.50000000 0.40000000 [33,] 5.20000000 4.10000000 1.50000000 0.10000000 [34,] 5.50000000 4.20000000 1.40000000 0.20000000 [35,] 4.90000000 3.10000000 1.50000000 0.20000000 [36,] 5.00000000 3.20000000 1.20000000 0.20000000 [37,] 5.50000000 3.50000000 1.30000000 0.20000000 [38,] 4.90000000 3.60000000 1.40000000 0.10000000 [39,] 4.40000000 3.00000000 1.30000000 0.20000000 [40,] 5.10000000 3.40000000 1.50000000 0.20000000 [41,] 5.00000000 3.50000000 1.30000000 0.30000000 [42,] 4.50000000 2.30000000 1.30000000 0.30000000 [43,] 4.40000000 3.20000000 1.30000000 0.20000000 [44,] 5.00000000 3.50000000 1.60000000 -0.06993778 [45,] 5.10000000 3.80000000 1.90000000 0.40000000 [46,] 4.80000000 3.00000000 1.40000000 0.30000000 [47,] 5.10000000 3.80000000 1.60000000 0.20000000 [48,] 4.60000000 3.20000000 1.40000000 0.20000000 [49,] 5.30000000 3.70000000 1.50000000 0.20000000 [50,] 5.00000000 3.30000000 1.40000000 0.20000000 [51,] 7.00000000 3.20000000 4.70000000 1.40000000 [52,] 6.40000000 3.20000000 4.50000000 1.50000000 [53,] 6.90000000 3.10000000 4.90000000 1.50000000 [54,] 5.50000000 2.30000000 4.00000000 1.30000000 [55,] 6.50000000 2.80000000 4.60000000 1.50000000 [56,] 5.70000000 2.80000000 4.50000000 1.00855002 [57,] 6.30000000 3.30000000 4.70000000 1.60000000 [58,] 4.90000000 2.40000000 3.30000000 1.00000000 [59,] 6.60000000 2.90000000 4.60000000 1.30000000 [60,] 5.20000000 2.70000000 3.90000000 1.40000000 [61,] 5.00000000 2.00000000 3.50000000 1.00000000 [62,] 5.90000000 3.00000000 4.20000000 1.50000000 [63,] 6.00000000 2.20000000 4.00000000 1.00000000 [64,] 6.10000000 2.90000000 4.70000000 1.40000000 [65,] 5.60000000 2.90000000 3.60000000 1.30000000 [66,] 6.70000000 3.10000000 4.40000000 1.40000000 [67,] 5.60000000 3.00000000 4.50000000 1.50000000 [68,] 5.80000000 2.70000000 4.10000000 1.00000000 [69,] 6.20000000 2.20000000 4.50000000 1.50000000 [70,] 5.60000000 2.50000000 3.90000000 1.10000000 [71,] 5.90000000 3.20000000 4.80000000 1.80000000 [72,] 6.10000000 2.80000000 4.00000000 1.30000000 [73,] 6.30000000 2.50000000 4.90000000 1.50000000 [74,] 6.10000000 2.80000000 4.70000000 1.20000000 [75,] 6.40000000 2.90000000 4.30000000 1.30000000 [76,] 6.60000000 3.00000000 4.40000000 1.40000000 [77,] 6.80000000 2.80000000 4.80000000 1.40000000 [78,] 6.70000000 3.00000000 5.00000000 1.70000000 [79,] 6.00000000 2.90000000 4.50000000 1.50000000 [80,] 5.70000000 2.60000000 3.50000000 1.00000000 [81,] 5.50000000 2.40000000 3.80000000 1.10000000 [82,] 5.50000000 2.40000000 3.70000000 1.00000000 [83,] 5.80000000 2.70000000 3.90000000 1.20000000 [84,] 6.00000000 2.70000000 5.10000000 1.60000000 [85,] 5.40000000 3.00000000 4.50000000 1.50000000 [86,] 6.00000000 3.40000000 4.50000000 1.60000000 [87,] 6.70000000 3.10000000 4.70000000 1.50000000 [88,] 6.30000000 2.30000000 4.40000000 1.30000000 [89,] 5.60000000 3.00000000 4.10000000 1.30000000 [90,] 5.50000000 2.50000000 4.00000000 1.30000000 [91,] 5.50000000 2.60000000 4.40000000 1.20000000 [92,] 6.10000000 3.00000000 4.60000000 1.40000000 [93,] 5.80000000 2.60000000 4.00000000 1.20000000 [94,] 5.00000000 2.30000000 3.30000000 1.00000000 [95,] 5.60000000 2.70000000 4.20000000 1.30000000 [96,] 5.70000000 3.00000000 4.20000000 1.20000000 [97,] 5.70000000 2.90000000 4.20000000 1.30000000 [98,] 6.20000000 2.90000000 4.30000000 1.30000000 [99,] 5.10000000 2.50000000 3.00000000 1.10000000 [100,] 5.70000000 2.80000000 4.10000000 1.30000000 [101,] 6.30000000 3.30000000 6.00000000 2.50000000 [102,] 5.80000000 2.70000000 5.10000000 1.90000000 [103,] 7.10000000 3.00000000 5.90000000 2.10000000 [104,] 6.30000000 2.90000000 5.60000000 1.80000000 [105,] 6.50000000 3.00000000 5.80000000 2.20000000 [106,] 7.60000000 3.00000000 6.60000000 2.10000000 [107,] 4.90000000 2.50000000 4.50000000 1.70000000 [108,] 7.30000000 2.90000000 6.30000000 1.80000000 [109,] 6.70000000 2.50000000 5.80000000 1.80000000 [110,] 7.20000000 3.60000000 6.10000000 2.50000000 [111,] 6.50000000 3.20000000 5.10000000 2.00000000 [112,] 6.40000000 2.70000000 5.30000000 1.90000000 [113,] 6.80000000 3.00000000 5.50000000 2.10000000 [114,] 5.70000000 2.50000000 5.00000000 2.00000000 [115,] 5.80000000 2.80000000 5.10000000 2.40000000 [116,] 6.40000000 3.20000000 5.30000000 2.30000000 [117,] 6.50000000 3.00000000 5.50000000 1.80000000 [118,] 7.70000000 3.80000000 6.70000000 2.20000000 [119,] 7.70000000 2.60000000 6.90000000 2.30000000 [120,] 6.00000000 2.20000000 5.00000000 1.50000000 [121,] 6.90000000 3.20000000 5.70000000 2.30000000 [122,] 5.60000000 2.80000000 4.90000000 2.00000000 [123,] 6.24570571 2.80000000 6.70000000 2.00000000 [124,] 6.30000000 2.70000000 4.90000000 1.80000000 [125,] 6.70000000 3.30000000 5.70000000 2.10000000 [126,] 7.20000000 3.20000000 6.00000000 1.80000000 [127,] 6.20000000 2.80000000 4.80000000 1.80000000 [128,] 6.10000000 3.00000000 4.90000000 1.80000000 [129,] 6.40000000 2.80000000 5.60000000 2.10000000 [130,] 7.20000000 3.00000000 5.80000000 1.60000000 [131,] 7.40000000 2.80000000 6.10000000 1.90000000 [132,] 7.90000000 3.80000000 6.40000000 2.00000000 [133,] 6.40000000 2.80000000 5.60000000 2.20000000 [134,] 6.30000000 2.80000000 5.10000000 1.50000000 [135,] 6.10000000 2.60000000 5.60000000 1.40000000 [136,] 7.70000000 3.00000000 6.10000000 2.30000000 [137,] 6.30000000 3.40000000 5.60000000 2.40000000 [138,] 6.40000000 3.10000000 5.50000000 1.80000000 [139,] 6.00000000 3.00000000 4.80000000 1.80000000 [140,] 6.90000000 3.10000000 5.40000000 2.10000000 [141,] 6.70000000 3.10000000 5.60000000 2.40000000 [142,] 6.90000000 3.10000000 5.10000000 2.30000000 [143,] 5.80000000 2.70000000 5.10000000 1.90000000 [144,] 6.80000000 3.20000000 5.90000000 2.30000000 [145,] 6.70000000 3.30000000 5.70000000 2.50000000 [146,] 6.70000000 3.00000000 5.20000000 2.30000000 [147,] 6.30000000 2.50000000 5.00000000 1.90000000 [148,] 6.50000000 3.00000000 5.20000000 2.00000000 [149,] 6.20000000 3.40000000 5.40000000 2.30000000 [150,] 5.90000000 3.00000000 5.10000000 1.80000000 * missing = row col * nbSample = 150 * nbCluster = 3 * lnLikelihood = -1017.688 * nbFreeParameter= 70 * criterion name = ICL * criterion value= 2393.331 * zi = [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [149] 2 2 **************************************** *** Cluster: 1 * Proportion = 0.3333333 * Means = 5.0060000 3.4280000 1.4582851 0.2326012 * S.D. = 0.3489470 0.3752546 0.1774684 0.1009678 **************************************** *** Cluster: 2 * Proportion = 0.3333333 * Means = 5.936000 2.770000 4.260000 1.320171 * S.D. = 0.5109834 0.3106445 0.4651881 0.2007287 **************************************** *** Cluster: 3 * Proportion = 0.3333333 * Means = 6.558914 2.974000 5.552000 2.026000 * S.D. = 0.6107556 0.3192554 0.5463479 0.2718897 **************************************** > model <- learnGamma( data=x, labels= z, + , models = clusterGammaNames(prop = "equal") + , algo = "simul", nbIter = 2, epsilon = 1e-08 + ) *** caught segfault *** address 0xe0, cause 'memory not mapped' Traceback: 1: learnGamma(data = x, labels = z, , models = clusterGammaNames(prop = "equal"), algo = "simul", nbIter = 2, epsilon = 1e-08) An irrecoverable exception occurred. R is aborting now ... Segmentation fault Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.1
Check: whether package can be installed
Result: WARN Found the following significant warnings: ClusterLauncher.cpp:201:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] ClusterLauncher.cpp:291:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] KmmLauncher.cpp:283:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] KmmLauncher.cpp:392:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] LearnLauncher.cpp:202:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] LearnLauncher.cpp:289:16: warning: format string is not a string literal (potentially insecure) [-Wformat-security] See ‘/data/gannet/ripley/R/packages/tests-clang/MixAll.Rcheck/00install.out’ for details. * used C compiler: ‘clang version 17.0.5’ * used C++ compiler: ‘clang version 17.0.5’ Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.5.1
Check: whether package can be installed
Result: ERROR Installation failed. Flavors: r-devel-windows-x86_64, r-release-windows-x86_64

Version: 1.5.1
Check: installed package size
Result: NOTE installed size is 27.9Mb sub-directories of 1Mb or more: libs 25.7Mb Flavors: r-release-macos-arm64, r-release-macos-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64