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gbm-package Generalized Boosted Regression Models (GBMs)

Description

This package implements extensions to Freund and Schapire’s AdaBoost algorithm and J. Fried-
man’s gradient boosting machine. Includes regression methods for least squares, absolute loss, lo-
gistic, Poisson, Cox proportional hazards partial likelihood, multinomial, t-distribution, AdaBoost
exponential loss, Learning to Rank, and Huberized hinge loss.

Details

Further information is available in vignette: browseVignettes(package = "gbm")

Author(s)

Greg Ridgeway <gregridgeway@gmail.com> with contributions by Daniel Edwards, Brian Kriegler,
Stefan Schroedl and Harry Southworth.
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References

Y. Freund and R.E. Schapire (1997) “A decision-theoretic generalization of on-line learning and an
application to boosting,” Journal of Computer and System Sciences, 55(1):119-139.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

J.H. Friedman, T. Hastie, R. Tibshirani (2000). “Additive Logistic Regression: a Statistical View of
Boosting,” Annals of Statistics 28(2):337-374.

J.H. Friedman (2001). “Greedy Function Approximation: A Gradient Boosting Machine,” Annals
of Statistics 29(5):1189-1232.

J.H. Friedman (2002). “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis
38(4):367-378.

The http://statweb.stanford.edu/~jhf/R-MART website.

basehaz.gbm Baseline hazard function

Description

Computes the Breslow estimator of the baseline hazard function for a proportional hazard regression
model.

Usage

basehaz.gbm(t, delta, f.x, t.eval = NULL, smooth = FALSE, cumulative = TRUE)

Arguments

t The survival times.

delta The censoring indicator.

f.x The predicted values of the regression model on the log hazard scale.

t.eval Values at which the baseline hazard will be evaluated.

smooth If TRUE basehaz.gbm will smooth the estimated baseline hazard using Fried-
man’s super smoother supsmu.

cumulative If TRUE the cumulative survival function will be computed.

Details

The proportional hazard model assumes h(t|x)=lambda(t)*exp(f(x)). gbm can estimate the f(x) com-
ponent via partial likelihood. After estimating f(x), basehaz.gbm can compute the a nonparametric
estimate of lambda(t).

Value

A vector of length equal to the length of t (or of length t.eval if t.eval is not NULL) containing
the baseline hazard evaluated at t (or at t.eval if t.eval is not NULL). If cumulative is set to TRUE
then the returned vector evaluates the cumulative hazard function at those values.

http://statweb.stanford.edu/~jhf/R-MART
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Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

N. Breslow (1972). "Discussion of ‘Regression Models and Life-Tables’ by D.R. Cox," Journal of
the Royal Statistical Society, Series B, 34(2):216-217.

N. Breslow (1974). "Covariance analysis of censored survival data," Biometrics 30:89-99.

See Also

survfit, gbm

calibrate.plot Calibration plot

Description

An experimental diagnostic tool that plots the fitted values versus the actual average values. Cur-
rently only available when distribution = "bernoulli".

Usage

calibrate.plot(
y,
p,
distribution = "bernoulli",
replace = TRUE,
line.par = list(col = "black"),
shade.col = "lightyellow",
shade.density = NULL,
rug.par = list(side = 1),
xlab = "Predicted value",
ylab = "Observed average",
xlim = NULL,
ylim = NULL,
knots = NULL,
df = 6,
...

)

Arguments

y The outcome 0-1 variable.

p The predictions estimating E(y|x).



calibrate.plot 5

distribution The loss function used in creating p. bernoulli and poisson are currently the
only special options. All others default to squared error assuming gaussian.

replace Determines whether this plot will replace or overlay the current plot. replace=FALSE
is useful for comparing the calibration of several methods.

line.par Graphics parameters for the line.

shade.col Color for shading the 2 SE region. shade.col=NA implies no 2 SE region.

shade.density The density parameter for polygon.

rug.par Graphics parameters passed to rug.

xlab x-axis label corresponding to the predicted values.

ylab y-axis label corresponding to the observed average.

xlim, ylim x- and y-axis limits. If not specified te function will select limits.

knots, df These parameters are passed directly to ns for constructing a natural spline
smoother for the calibration curve.

... Additional optional arguments to be passed onto plot

Details

Uses natural splines to estimate E(y|p). Well-calibrated predictions imply that E(y|p) = p. The plot
also includes a pointwise 95

Value

No return values.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

J.F. Yates (1982). "External correspondence: decomposition of the mean probability score," Organ-
isational Behaviour and Human Performance 30:132-156.

D.J. Spiegelhalter (1986). "Probabilistic Prediction in Patient Management and Clinical Trials,"
Statistics in Medicine 5:421-433.

Examples

# Don't want R CMD check to think there is a dependency on rpart
# so comment out the example
#library(rpart)
#data(kyphosis)
#y <- as.numeric(kyphosis$Kyphosis)-1
#x <- kyphosis$Age
#glm1 <- glm(y~poly(x,2),family=binomial)
#p <- predict(glm1,type="response")
#calibrate.plot(y, p, xlim=c(0,0.6), ylim=c(0,0.6))
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gbm Generalized Boosted Regression Modeling (GBM)

Description

Fits generalized boosted regression models. For technical details, see the vignette: utils::browseVignettes("gbm").

Usage

gbm(
formula = formula(data),
distribution = "bernoulli",
data = list(),
weights,
var.monotone = NULL,
n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,
shrinkage = 0.1,
bag.fraction = 0.5,
train.fraction = 1,
cv.folds = 0,
keep.data = TRUE,
verbose = FALSE,
class.stratify.cv = NULL,
n.cores = NULL

)

Arguments

formula A symbolic description of the model to be fit. The formula may include an offset
term (e.g. y~offset(n)+x). If keep.data = FALSE in the initial call to gbm then it
is the user’s responsibility to resupply the offset to gbm.more.

distribution Either a character string specifying the name of the distribution to use or a list
with a component name specifying the distribution and any additional param-
eters needed. If not specified, gbm will try to guess: if the response has only
2 unique values, bernoulli is assumed; otherwise, if the response is a factor,
multinomial is assumed; otherwise, if the response has class "Surv", coxph is
assumed; otherwise, gaussian is assumed.
Currently available options are "gaussian" (squared error), "laplace" (abso-
lute loss), "tdist" (t-distribution loss), "bernoulli" (logistic regression for
0-1 outcomes), "huberized" (huberized hinge loss for 0-1 outcomes), classes),
"adaboost" (the AdaBoost exponential loss for 0-1 outcomes), "poisson" (count
outcomes), "coxph" (right censored observations), "quantile", or "pairwise"
(ranking measure using the LambdaMart algorithm).
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If quantile regression is specified, distribution must be a list of the form
list(name = "quantile", alpha = 0.25) where alpha is the quantile to esti-
mate. The current version’s quantile regression method does not handle non-
constant weights and will stop.
If "tdist" is specified, the default degrees of freedom is 4 and this can be con-
trolled by specifying distribution = list(name = "tdist", df = DF) where
DF is your chosen degrees of freedom.
If "pairwise" regression is specified, distribution must be a list of the form
list(name="pairwise",group=...,metric=...,max.rank=...) (metric and
max.rank are optional, see below). group is a character vector with the column
names of data that jointly indicate the group an instance belongs to (typically
a query in Information Retrieval applications). For training, only pairs of in-
stances from the same group and with different target labels can be considered.
metric is the IR measure to use, one of
list("conc") Fraction of concordant pairs; for binary labels, this is equivalent

to the Area under the ROC Curve
: Fraction of concordant pairs; for binary labels, this is equivalent to the Area

under the ROC Curve
list("mrr") Mean reciprocal rank of the highest-ranked positive instance
: Mean reciprocal rank of the highest-ranked positive instance
list("map") Mean average precision, a generalization of mrr to multiple posi-

tive instances
: Mean average precision, a generalization of mrr to multiple positive instances
list("ndcg:") Normalized discounted cumulative gain. The score is the weighted

sum (DCG) of the user-supplied target values, weighted by log(rank+1),
and normalized to the maximum achievable value. This is the default if the
user did not specify a metric.

ndcg and conc allow arbitrary target values, while binary targets 0,1 are ex-
pected for map and mrr. For ndcg and mrr, a cut-off can be chosen using a
positive integer parameter max.rank. If left unspecified, all ranks are taken into
account.
Note that splitting of instances into training and validation sets follows group
boundaries and therefore only approximates the specified train.fraction ratio
(the same applies to cross-validation folds). Internally, queries are randomly
shuffled before training, to avoid bias.
Weights can be used in conjunction with pairwise metrics, however it is assumed
that they are constant for instances from the same group.
For details and background on the algorithm, see e.g. Burges (2010).

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which gbm is called. If keep.data=TRUE in the initial call to gbm then gbm stores
a copy with the object. If keep.data=FALSE then subsequent calls to gbm.more
must resupply the same dataset. It becomes the user’s responsibility to resupply
the same data at this point.

weights an optional vector of weights to be used in the fitting process. Must be positive
but do not need to be normalized. If keep.data=FALSE in the initial call to gbm
then it is the user’s responsibility to resupply the weights to gbm.more.
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var.monotone an optional vector, the same length as the number of predictors, indicating which
variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) re-
lationship with the outcome.

n.trees Integer specifying the total number of trees to fit. This is equivalent to the num-
ber of iterations and the number of basis functions in the additive expansion.
Default is 100.

interaction.depth

Integer specifying the maximum depth of each tree (i.e., the highest level of
variable interactions allowed). A value of 1 implies an additive model, a value
of 2 implies a model with up to 2-way interactions, etc. Default is 1.

n.minobsinnode Integer specifying the minimum number of observations in the terminal nodes
of the trees. Note that this is the actual number of observations, not the total
weight.

shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as
the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller
learning rate typically requires more trees. Default is 0.1.

bag.fraction the fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit. If
bag.fraction < 1 then running the same model twice will result in similar but
different fits. gbm uses the R random number generator so set.seed can ensure
that the model can be reconstructed. Preferably, the user can save the returned
gbm.object using save. Default is 0.5.

train.fraction The first train.fraction * nrows(data) observations are used to fit the gbm
and the remainder are used for computing out-of-sample estimates of the loss
function.

cv.folds Number of cross-validation folds to perform. If cv.folds>1 then gbm, in ad-
dition to the usual fit, will perform a cross-validation, calculate an estimate of
generalization error returned in cv.error.

keep.data a logical variable indicating whether to keep the data and an index of the data
stored with the object. Keeping the data and index makes subsequent calls to
gbm.more faster at the cost of storing an extra copy of the dataset.

verbose Logical indicating whether or not to print out progress and performance indica-
tors (TRUE). If this option is left unspecified for gbm.more, then it uses verbose
from object. Default is FALSE.

class.stratify.cv

Logical indicating whether or not the cross-validation should be stratified by
class. Defaults to TRUE for distribution = "multinomial" and is only im-
plemented for "multinomial" and "bernoulli". The purpose of stratifying
the cross-validation is to help avoiding situations in which training sets do not
contain all classes.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores. If n.cores is not specified by the user,
it is guessed using the detectCores function in the parallel package. Note
that the documentation for detectCores makes clear that it is not failsafe and
could return a spurious number of available cores.
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Details

gbm.fit provides the link between R and the C++ gbm engine. gbm is a front-end to gbm.fit
that uses the familiar R modeling formulas. However, model.frame is very slow if there are many
predictor variables. For power-users with many variables use gbm.fit. For general practice gbm is
preferable.

This package implements the generalized boosted modeling framework. Boosting is the process
of iteratively adding basis functions in a greedy fashion so that each additional basis function fur-
ther reduces the selected loss function. This implementation closely follows Friedman’s Gradient
Boosting Machine (Friedman, 2001).

In addition to many of the features documented in the Gradient Boosting Machine, gbm offers addi-
tional features including the out-of-bag estimator for the optimal number of iterations, the ability to
store and manipulate the resulting gbm object, and a variety of other loss functions that had not pre-
viously had associated boosting algorithms, including the Cox partial likelihood for censored data,
the poisson likelihood for count outcomes, and a gradient boosting implementation to minimize the
AdaBoost exponential loss function.

Value

A gbm.object object.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

Quantile regression code developed by Brian Kriegler <bk@stat.ucla.edu>

t-distribution, and multinomial code developed by Harry Southworth and Daniel Edwards

Pairwise code developed by Stefan Schroedl <schroedl@a9.com>

References

Y. Freund and R.E. Schapire (1997) “A decision-theoretic generalization of on-line learning and an
application to boosting,” Journal of Computer and System Sciences, 55(1):119-139.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

J.H. Friedman, T. Hastie, R. Tibshirani (2000). “Additive Logistic Regression: a Statistical View of
Boosting,” Annals of Statistics 28(2):337-374.

J.H. Friedman (2001). “Greedy Function Approximation: A Gradient Boosting Machine,” Annals
of Statistics 29(5):1189-1232.

J.H. Friedman (2002). “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis
38(4):367-378.

B. Kriegler (2007). Cost-Sensitive Stochastic Gradient Boosting Within a Quantitative Regression
Framework. Ph.D. Dissertation. University of California at Los Angeles, Los Angeles, CA, USA.
Advisor(s) Richard A. Berk. urlhttps://dl.acm.org/citation.cfm?id=1354603.

C. Burges (2010). “From RankNet to LambdaRank to LambdaMART: An Overview,” Microsoft
Research Technical Report MSR-TR-2010-82.
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See Also

gbm.object, gbm.perf, plot.gbm, predict.gbm, summary.gbm, and pretty.gbm.tree.

Examples

#
# A least squares regression example
#

# Simulate data
set.seed(101) # for reproducibility
N <- 1000
X1 <- runif(N)
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE), levels = letters[4:1])
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu
sigma <- sqrt(var(Y) / SNR)
Y <- Y + rnorm(N, 0, sigma)
X1[sample(1:N,size=500)] <- NA # introduce some missing values
X4[sample(1:N,size=300)] <- NA # introduce some missing values
data <- data.frame(Y, X1, X2, X3, X4, X5, X6)

# Fit a GBM
set.seed(102) # for reproducibility
gbm1 <- gbm(Y ~ ., data = data, var.monotone = c(0, 0, 0, 0, 0, 0),

distribution = "gaussian", n.trees = 100, shrinkage = 0.1,
interaction.depth = 3, bag.fraction = 0.5, train.fraction = 0.5,
n.minobsinnode = 10, cv.folds = 5, keep.data = TRUE,
verbose = FALSE, n.cores = 1)

# Check performance using the out-of-bag (OOB) error; the OOB error typically
# underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm1, method = "OOB")
print(best.iter)

# Check performance using the 50% heldout test set
best.iter <- gbm.perf(gbm1, method = "test")
print(best.iter)

# Check performance using 5-fold cross-validation
best.iter <- gbm.perf(gbm1, method = "cv")
print(best.iter)

# Plot relative influence of each variable
par(mfrow = c(1, 2))
summary(gbm1, n.trees = 1) # using first tree
summary(gbm1, n.trees = best.iter) # using estimated best number of trees
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# Compactly print the first and last trees for curiosity
print(pretty.gbm.tree(gbm1, i.tree = 1))
print(pretty.gbm.tree(gbm1, i.tree = gbm1$n.trees))

# Simulate new data
set.seed(103) # for reproducibility
N <- 1000
X1 <- runif(N)
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE))
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu + rnorm(N, 0, sigma)
data2 <- data.frame(Y, X1, X2, X3, X4, X5, X6)

# Predict on the new data using the "best" number of trees; by default,
# predictions will be on the link scale
Yhat <- predict(gbm1, newdata = data2, n.trees = best.iter, type = "link")

# least squares error
print(sum((data2$Y - Yhat)^2))

# Construct univariate partial dependence plots
plot(gbm1, i.var = 1, n.trees = best.iter)
plot(gbm1, i.var = 2, n.trees = best.iter)
plot(gbm1, i.var = "X3", n.trees = best.iter) # can use index or name

# Construct bivariate partial dependence plots
plot(gbm1, i.var = 1:2, n.trees = best.iter)
plot(gbm1, i.var = c("X2", "X3"), n.trees = best.iter)
plot(gbm1, i.var = 3:4, n.trees = best.iter)

# Construct trivariate partial dependence plots
plot(gbm1, i.var = c(1, 2, 6), n.trees = best.iter,

continuous.resolution = 20)
plot(gbm1, i.var = 1:3, n.trees = best.iter)
plot(gbm1, i.var = 2:4, n.trees = best.iter)
plot(gbm1, i.var = 3:5, n.trees = best.iter)

# Add more (i.e., 100) boosting iterations to the ensemble
gbm2 <- gbm.more(gbm1, n.new.trees = 100, verbose = FALSE)

gbm.fit Generalized Boosted Regression Modeling (GBM)



12 gbm.fit

Description

Workhorse function providing the link between R and the C++ gbm engine. gbm is a front-end
to gbm.fit that uses the familiar R modeling formulas. However, model.frame is very slow if
there are many predictor variables. For power-users with many variables use gbm.fit. For general
practice gbm is preferable.

Usage

gbm.fit(
x,
y,
offset = NULL,
misc = NULL,
distribution = "bernoulli",
w = NULL,
var.monotone = NULL,
n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,
shrinkage = 0.001,
bag.fraction = 0.5,
nTrain = NULL,
train.fraction = NULL,
keep.data = TRUE,
verbose = TRUE,
var.names = NULL,
response.name = "y",
group = NULL

)

Arguments

x A data frame or matrix containing the predictor variables. The number of rows
in x must be the same as the length of y.

y A vector of outcomes. The number of rows in x must be the same as the length
of y.

offset A vector of offset values.

misc An R object that is simply passed on to the gbm engine. It can be used for
additional data for the specific distribution. Currently it is only used for passing
the censoring indicator for the Cox proportional hazards model.

distribution Either a character string specifying the name of the distribution to use or a list
with a component name specifying the distribution and any additional param-
eters needed. If not specified, gbm will try to guess: if the response has only
2 unique values, bernoulli is assumed; otherwise, if the response is a factor,
multinomial is assumed; otherwise, if the response has class "Surv", coxph is
assumed; otherwise, gaussian is assumed.
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Currently available options are "gaussian" (squared error), "laplace" (abso-
lute loss), "tdist" (t-distribution loss), "bernoulli" (logistic regression for
0-1 outcomes), "huberized" (huberized hinge loss for 0-1 outcomes), classes),
"adaboost" (the AdaBoost exponential loss for 0-1 outcomes), "poisson" (count
outcomes), "coxph" (right censored observations), "quantile", or "pairwise"
(ranking measure using the LambdaMart algorithm).
If quantile regression is specified, distribution must be a list of the form
list(name = "quantile", alpha = 0.25) where alpha is the quantile to esti-
mate. The current version’s quantile regression method does not handle non-
constant weights and will stop.
If "tdist" is specified, the default degrees of freedom is 4 and this can be con-
trolled by specifying distribution = list(name = "tdist", df = DF) where
DF is your chosen degrees of freedom.
If "pairwise" regression is specified, distribution must be a list of the form
list(name="pairwise",group=...,metric=...,max.rank=...) (metric and
max.rank are optional, see below). group is a character vector with the column
names of data that jointly indicate the group an instance belongs to (typically
a query in Information Retrieval applications). For training, only pairs of in-
stances from the same group and with different target labels can be considered.
metric is the IR measure to use, one of

list("conc") Fraction of concordant pairs; for binary labels, this is equivalent
to the Area under the ROC Curve

: Fraction of concordant pairs; for binary labels, this is equivalent to the Area
under the ROC Curve

list("mrr") Mean reciprocal rank of the highest-ranked positive instance
: Mean reciprocal rank of the highest-ranked positive instance
list("map") Mean average precision, a generalization of mrr to multiple posi-

tive instances
: Mean average precision, a generalization of mrr to multiple positive instances
list("ndcg:") Normalized discounted cumulative gain. The score is the weighted

sum (DCG) of the user-supplied target values, weighted by log(rank+1),
and normalized to the maximum achievable value. This is the default if the
user did not specify a metric.

ndcg and conc allow arbitrary target values, while binary targets 0,1 are ex-
pected for map and mrr. For ndcg and mrr, a cut-off can be chosen using a
positive integer parameter max.rank. If left unspecified, all ranks are taken into
account.
Note that splitting of instances into training and validation sets follows group
boundaries and therefore only approximates the specified train.fraction ratio
(the same applies to cross-validation folds). Internally, queries are randomly
shuffled before training, to avoid bias.
Weights can be used in conjunction with pairwise metrics, however it is assumed
that they are constant for instances from the same group.
For details and background on the algorithm, see e.g. Burges (2010).

w A vector of weights of the same length as the y.
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var.monotone an optional vector, the same length as the number of predictors, indicating which
variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) re-
lationship with the outcome.

n.trees the total number of trees to fit. This is equivalent to the number of iterations and
the number of basis functions in the additive expansion.

interaction.depth

The maximum depth of variable interactions. A value of 1 implies an additive
model, a value of 2 implies a model with up to 2-way interactions, etc. Default
is 1.

n.minobsinnode Integer specifying the minimum number of observations in the trees terminal
nodes. Note that this is the actual number of observations not the total weight.

shrinkage The shrinkage parameter applied to each tree in the expansion. Also known as
the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller
learning rate typically requires more trees. Default is 0.1.

bag.fraction The fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit. If
bag.fraction < 1 then running the same model twice will result in similar but
different fits. gbm uses the R random number generator so set.seed can ensure
that the model can be reconstructed. Preferably, the user can save the returned
gbm.object using save. Default is 0.5.

nTrain An integer representing the number of cases on which to train. This is the
preferred way of specification for gbm.fit; The option train.fraction in
gbm.fit is deprecated and only maintained for backward compatibility. These
two parameters are mutually exclusive. If both are unspecified, all data is used
for training.

train.fraction The first train.fraction * nrows(data) observations are used to fit the gbm
and the remainder are used for computing out-of-sample estimates of the loss
function.

keep.data Logical indicating whether or not to keep the data and an index of the data stored
with the object. Keeping the data and index makes subsequent calls to gbm.more
faster at the cost of storing an extra copy of the dataset.

verbose Logical indicating whether or not to print out progress and performance indica-
tors (TRUE). If this option is left unspecified for gbm.more, then it uses verbose
from object. Default is FALSE.

var.names Vector of strings of length equal to the number of columns of x containing the
names of the predictor variables.

response.name Character string label for the response variable.

group The group to use when distribution = "pairwise".

Details

This package implements the generalized boosted modeling framework. Boosting is the process
of iteratively adding basis functions in a greedy fashion so that each additional basis function fur-
ther reduces the selected loss function. This implementation closely follows Friedman’s Gradient
Boosting Machine (Friedman, 2001).
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In addition to many of the features documented in the Gradient Boosting Machine, gbm offers addi-
tional features including the out-of-bag estimator for the optimal number of iterations, the ability to
store and manipulate the resulting gbm object, and a variety of other loss functions that had not pre-
viously had associated boosting algorithms, including the Cox partial likelihood for censored data,
the poisson likelihood for count outcomes, and a gradient boosting implementation to minimize the
AdaBoost exponential loss function.

Value

A gbm.object object.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

Quantile regression code developed by Brian Kriegler <bk@stat.ucla.edu>

t-distribution, and multinomial code developed by Harry Southworth and Daniel Edwards

Pairwise code developed by Stefan Schroedl <schroedl@a9.com>

References

Y. Freund and R.E. Schapire (1997) “A decision-theoretic generalization of on-line learning and an
application to boosting,” Journal of Computer and System Sciences, 55(1):119-139.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

J.H. Friedman, T. Hastie, R. Tibshirani (2000). “Additive Logistic Regression: a Statistical View of
Boosting,” Annals of Statistics 28(2):337-374.

J.H. Friedman (2001). “Greedy Function Approximation: A Gradient Boosting Machine,” Annals
of Statistics 29(5):1189-1232.

J.H. Friedman (2002). “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis
38(4):367-378.

B. Kriegler (2007). Cost-Sensitive Stochastic Gradient Boosting Within a Quantitative Regression
Framework. Ph.D. Dissertation. University of California at Los Angeles, Los Angeles, CA, USA.
Advisor(s) Richard A. Berk. urlhttps://dl.acm.org/citation.cfm?id=1354603.

C. Burges (2010). “From RankNet to LambdaRank to LambdaMART: An Overview,” Microsoft
Research Technical Report MSR-TR-2010-82.

See Also

gbm.object, gbm.perf, plot.gbm, predict.gbm, summary.gbm, and pretty.gbm.tree.
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gbm.more Generalized Boosted Regression Modeling (GBM)

Description

Adds additional trees to a gbm.object object.

Usage

gbm.more(
object,
n.new.trees = 100,
data = NULL,
weights = NULL,
offset = NULL,
verbose = NULL

)

Arguments

object A gbm.object object created from an initial call to gbm.

n.new.trees Integer specifying the number of additional trees to add to object. Default is
100.

data An optional data frame containing the variables in the model. By default the
variables are taken from environment(formula), typically the environment
from which gbm is called. If keep.data=TRUE in the initial call to gbm then
gbm stores a copy with the object. If keep.data=FALSE then subsequent calls to
gbm.more must resupply the same dataset. It becomes the user’s responsibility
to resupply the same data at this point.

weights An optional vector of weights to be used in the fitting process. Must be positive
but do not need to be normalized. If keep.data=FALSE in the initial call to gbm
then it is the user’s responsibility to resupply the weights to gbm.more.

offset A vector of offset values.

verbose Logical indicating whether or not to print out progress and performance indica-
tors (TRUE). If this option is left unspecified for gbm.more, then it uses verbose
from object. Default is FALSE.

Value

A gbm.object object.

Examples

#
# A least squares regression example
#
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# Simulate data
set.seed(101) # for reproducibility
N <- 1000
X1 <- runif(N)
X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE), levels = letters[4:1])
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu
sigma <- sqrt(var(Y) / SNR)
Y <- Y + rnorm(N, 0, sigma)
X1[sample(1:N,size=500)] <- NA # introduce some missing values
X4[sample(1:N,size=300)] <- NA # introduce some missing values
data <- data.frame(Y, X1, X2, X3, X4, X5, X6)

# Fit a GBM
set.seed(102) # for reproducibility
gbm1 <- gbm(Y ~ ., data = data, var.monotone = c(0, 0, 0, 0, 0, 0),

distribution = "gaussian", n.trees = 100, shrinkage = 0.1,
interaction.depth = 3, bag.fraction = 0.5, train.fraction = 0.5,
n.minobsinnode = 10, cv.folds = 5, keep.data = TRUE,
verbose = FALSE, n.cores = 1)

# Check performance using the out-of-bag (OOB) error; the OOB error typically
# underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm1, method = "OOB")
print(best.iter)

# Check performance using the 50% heldout test set
best.iter <- gbm.perf(gbm1, method = "test")
print(best.iter)

# Check performance using 5-fold cross-validation
best.iter <- gbm.perf(gbm1, method = "cv")
print(best.iter)

# Plot relative influence of each variable
par(mfrow = c(1, 2))
summary(gbm1, n.trees = 1) # using first tree
summary(gbm1, n.trees = best.iter) # using estimated best number of trees

# Compactly print the first and last trees for curiosity
print(pretty.gbm.tree(gbm1, i.tree = 1))
print(pretty.gbm.tree(gbm1, i.tree = gbm1$n.trees))

# Simulate new data
set.seed(103) # for reproducibility
N <- 1000
X1 <- runif(N)
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X2 <- 2 * runif(N)
X3 <- ordered(sample(letters[1:4], N, replace = TRUE))
X4 <- factor(sample(letters[1:6], N, replace = TRUE))
X5 <- factor(sample(letters[1:3], N, replace = TRUE))
X6 <- 3 * runif(N)
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
Y <- X1 ^ 1.5 + 2 * (X2 ^ 0.5) + mu + rnorm(N, 0, sigma)
data2 <- data.frame(Y, X1, X2, X3, X4, X5, X6)

# Predict on the new data using the "best" number of trees; by default,
# predictions will be on the link scale
Yhat <- predict(gbm1, newdata = data2, n.trees = best.iter, type = "link")

# least squares error
print(sum((data2$Y - Yhat)^2))

# Construct univariate partial dependence plots
plot(gbm1, i.var = 1, n.trees = best.iter)
plot(gbm1, i.var = 2, n.trees = best.iter)
plot(gbm1, i.var = "X3", n.trees = best.iter) # can use index or name

# Construct bivariate partial dependence plots
plot(gbm1, i.var = 1:2, n.trees = best.iter)
plot(gbm1, i.var = c("X2", "X3"), n.trees = best.iter)
plot(gbm1, i.var = 3:4, n.trees = best.iter)

# Construct trivariate partial dependence plots
plot(gbm1, i.var = c(1, 2, 6), n.trees = best.iter,

continuous.resolution = 20)
plot(gbm1, i.var = 1:3, n.trees = best.iter)
plot(gbm1, i.var = 2:4, n.trees = best.iter)
plot(gbm1, i.var = 3:5, n.trees = best.iter)

# Add more (i.e., 100) boosting iterations to the ensemble
gbm2 <- gbm.more(gbm1, n.new.trees = 100, verbose = FALSE)

gbm.object Generalized Boosted Regression Model Object

Description

These are objects representing fitted gbms.

Value

initF The "intercept" term, the initial predicted value to which trees make adjustments.

fit A vector containing the fitted values on the scale of regression function (e.g.
log-odds scale for bernoulli, log scale for poisson).

train.error A vector of length equal to the number of fitted trees containing the value of the
loss function for each boosting iteration evaluated on the training data.
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valid.error A vector of length equal to the number of fitted trees containing the value of the
loss function for each boosting iteration evaluated on the validation data.

cv.error If cv.folds < 2 this component is NULL. Otherwise, this component is a vector
of length equal to the number of fitted trees containing a cross-validated estimate
of the loss function for each boosting iteration.

oobag.improve A vector of length equal to the number of fitted trees containing an out-of-bag
estimate of the marginal reduction in the expected value of the loss function.
The out-of-bag estimate uses only the training data and is useful for estimating
the optimal number of boosting iterations. See gbm.perf.

trees A list containing the tree structures. The components are best viewed using
pretty.gbm.tree.

c.splits A list of all the categorical splits in the collection of trees. If the trees[[i]]
component of a gbm object describes a categorical split then the splitting value
will refer to a component of c.splits. That component of c.splits will be a
vector of length equal to the number of levels in the categorical split variable. -1
indicates left, +1 indicates right, and 0 indicates that the level was not present in
the training data.

cv.fitted If cross-validation was performed, the cross-validation predicted values on the
scale of the linear predictor. That is, the fitted values from the i-th CV-fold, for
the model having been trained on the data in all other folds.

Structure

The following components must be included in a legitimate gbm object.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

See Also

gbm

gbm.perf GBM performance

Description

Estimates the optimal number of boosting iterations for a gbm object and optionally plots various
performance measures

Usage

gbm.perf(object, plot.it = TRUE, oobag.curve = FALSE, overlay = TRUE, method)
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Arguments

object A gbm.object created from an initial call to gbm.

plot.it An indicator of whether or not to plot the performance measures. Setting plot.it
= TRUE creates two plots. The first plot plots object$train.error (in black)
and object$valid.error (in red) versus the iteration number. The scale of the
error measurement, shown on the left vertical axis, depends on the distribution
argument used in the initial call to gbm.

oobag.curve Indicates whether to plot the out-of-bag performance measures in a second plot.

overlay If TRUE and oobag.curve=TRUE then a right y-axis is added to the training and
test error plot and the estimated cumulative improvement in the loss function is
plotted versus the iteration number.

method Indicate the method used to estimate the optimal number of boosting iterations.
method = "OOB" computes the out-of-bag estimate and method = "test" uses
the test (or validation) dataset to compute an out-of-sample estimate. method =
"cv" extracts the optimal number of iterations using cross-validation if gbm was
called with cv.folds > 1.

Value

gbm.perf Returns the estimated optimal number of iterations. The method of computation depends
on the method argument.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

See Also

gbm, gbm.object

gbm.roc.area Compute Information Retrieval measures.

Description

Functions to compute Information Retrieval measures for pairwise loss for a single group. The
function returns the respective metric, or a negative value if it is undefined for the given group.

Usage

gbm.roc.area(obs, pred)

gbm.conc(x)

ir.measure.conc(y.f, max.rank = 0)
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ir.measure.auc(y.f, max.rank = 0)

ir.measure.mrr(y.f, max.rank)

ir.measure.map(y.f, max.rank = 0)

ir.measure.ndcg(y.f, max.rank)

perf.pairwise(y, f, group, metric = "ndcg", w = NULL, max.rank = 0)

Arguments

obs Observed value.

pred Predicted value.

x Numeric vector.
y, y.f, f, w, group, max.rank

Used internally.

metric What type of performance measure to compute.

Details

For simplicity, we have no special handling for ties; instead, we break ties randomly. This is slightly
inaccurate for individual groups, but should have only a small effect on the overall measure.

gbm.conc computes the concordance index: Fraction of all pairs (i,j) with i<j, x[i] != x[j], such that
x[j] < x[i]

If obs is binary, then gbm.roc.area(obs, pred) = gbm.conc(obs[order(-pred)]).

gbm.conc is more general as it allows non-binary targets, but is significantly slower.

Value

The requested performance measure.

Author(s)

Stefan Schroedl

References

C. Burges (2010). "From RankNet to LambdaRank to LambdaMART: An Overview", Microsoft
Research Technical Report MSR-TR-2010-82.

See Also

gbm
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gbmCrossVal Cross-validate a gbm

Description

Functions for cross-validating gbm. These functions are used internally and are not intended for
end-user direct usage.

Usage

gbmCrossVal(
cv.folds,
nTrain,
n.cores,
class.stratify.cv,
data,
x,
y,
offset,
distribution,
w,
var.monotone,
n.trees,
interaction.depth,
n.minobsinnode,
shrinkage,
bag.fraction,
var.names,
response.name,
group

)

gbmCrossValErr(cv.models, cv.folds, cv.group, nTrain, n.trees)

gbmCrossValPredictions(
cv.models,
cv.folds,
cv.group,
best.iter.cv,
distribution,
data,
y

)

gbmCrossValModelBuild(
cv.folds,
cv.group,
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n.cores,
i.train,
x,
y,
offset,
distribution,
w,
var.monotone,
n.trees,
interaction.depth,
n.minobsinnode,
shrinkage,
bag.fraction,
var.names,
response.name,
group

)

gbmDoFold(
X,
i.train,
x,
y,
offset,
distribution,
w,
var.monotone,
n.trees,
interaction.depth,
n.minobsinnode,
shrinkage,
bag.fraction,
cv.group,
var.names,
response.name,
group,
s

)

Arguments

cv.folds The number of cross-validation folds.

nTrain The number of training samples.

n.cores The number of cores to use.
class.stratify.cv

Whether or not stratified cross-validation samples are used.

data The data.

x The model matrix.
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y The response variable.

offset The offset.

distribution The type of loss function. See gbm.

w Observation weights.

var.monotone See gbm.

n.trees The number of trees to fit.
interaction.depth

The degree of allowed interactions. See gbm.

n.minobsinnode See gbm.

shrinkage See gbm.

bag.fraction See gbm.

var.names See gbm.

response.name See gbm.

group Used when distribution = "pairwise". See gbm.

cv.models A list containing the models for each fold.

cv.group A vector indicating the cross-validation fold for each member of the training set.

best.iter.cv The iteration with lowest cross-validation error.

i.train Items in the training set.

X Index (cross-validation fold) on which to subset.

s Random seed.

Details

These functions are not intended for end-user direct usage, but are used internally by gbm.

Value

A list containing the cross-validation error and predictions.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(5):1189-1232.

L. Breiman (2001). https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf.

See Also

gbm

https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf
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guessDist gbm internal functions

Description

Helper functions for preprocessing data prior to building a "gbm" object.

Usage

guessDist(y)

getCVgroup(distribution, class.stratify.cv, y, i.train, cv.folds, group)

getStratify(strat, d)

checkMissing(x, y)

checkWeights(w, n)

checkID(id)

checkOffset(o, y)

getVarNames(x)

gbmCluster(n)

Arguments

y The response variable.
class.stratify.cv

Whether or not to stratify, if provided by the user.

i.train Computed internally by gbm.

cv.folds The number of cross-validation folds.

group The group, if using distibution = "pairwise".

strat Whether or not to stratify.
d, distribution

The distribution, either specified by the user or implied.

x The design matrix.

w The weights.

n The number of cores to use in the cluster.

id The interaction depth.

o The offset.
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Details

These are functions used internally by gbm and not intended for direct use by the user.

interact.gbm Estimate the strength of interaction effects

Description

Computes Friedman’s H-statistic to assess the strength of variable interactions.

Usage

interact.gbm(x, data, i.var = 1, n.trees = x$n.trees)

Arguments

x A gbm.object fitted using a call to gbm.

data The dataset used to construct x. If the original dataset is large, a random sub-
sample may be used to accelerate the computation in interact.gbm.

i.var A vector of indices or the names of the variables for compute the interaction
effect. If using indices, the variables are indexed in the same order that they
appear in the initial gbm formula.

n.trees The number of trees used to generate the plot. Only the first n.trees trees will
be used.

Details

interact.gbm computes Friedman’s H-statistic to assess the relative strength of interaction effects
in non-linear models. H is on the scale of [0-1] with higher values indicating larger interaction
effects. To connect to a more familiar measure, if x1 and x2 are uncorrelated covariates with mean
0 and variance 1 and the model is of the form

y = β0 + β1x1 + β2x2 + β3x3

then

H =
β3√

β2
1 + β2

2 + β2
3

Note that if the main effects are weak, the estimated H will be unstable. For example, if (in the case
of a two-way interaction) neither main effect is in the selected model (relative influence is zero), the
result will be 0/0. Also, with weak main effects, rounding errors can result in values of H > 1 which
are not possible.

Value

Returns the value of H .
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Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

J.H. Friedman and B.E. Popescu (2005). “Predictive Learning via Rule Ensembles.” Section 8.1

See Also

gbm, gbm.object

plot.gbm Marginal plots of fitted gbm objects

Description

Plots the marginal effect of the selected variables by "integrating" out the other variables.

Usage

## S3 method for class 'gbm'
plot(
x,
i.var = 1,
n.trees = x$n.trees,
continuous.resolution = 100,
return.grid = FALSE,
type = c("link", "response"),
level.plot = TRUE,
contour = FALSE,
number = 4,
overlap = 0.1,
col.regions = viridis::viridis,
...

)

Arguments

x A gbm.object that was fit using a call to gbm.

i.var Vector of indices or the names of the variables to plot. If using indices, the vari-
ables are indexed in the same order that they appear in the initial gbm formula.
If length(i.var) is between 1 and 3 then plot.gbm produces the plots. Oth-
erwise, plot.gbm returns only the grid of evaluation points and their average
predictions

n.trees Integer specifying the number of trees to use to generate the plot. Default is to
use x$n.trees (i.e., the entire ensemble).
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continuous.resolution

Integer specifying the number of equally space points at which to evaluate con-
tinuous predictors.

return.grid Logical indicating whether or not to produce graphics FALSE or only return the
grid of evaluation points and their average predictions TRUE. This is useful for
customizing the graphics for special variable types, or for higher dimensional
graphs.

type Character string specifying the type of prediction to plot on the vertical axis.
See predict.gbm for details.

level.plot Logical indicating whether or not to use a false color level plot (TRUE) or a 3-D
surface (FALSE). Default is TRUE.

contour Logical indicating whether or not to add contour lines to the level plot. Only
used when level.plot = TRUE. Default is FALSE.

number Integer specifying the number of conditional intervals to use for the continuous
panel variables. See co.intervals and equal.count for further details.

overlap The fraction of overlap of the conditioning variables. See co.intervals and
equal.count for further details.

col.regions Color vector to be used if level.plot is TRUE. Defaults to the wonderful Mat-
plotlib ’viridis’ color map provided by the viridis package. See viridis for
details.

... Additional optional arguments to be passed onto plot.

Details

plot.gbm produces low dimensional projections of the gbm.object by integrating out the variables
not included in the i.var argument. The function selects a grid of points and uses the weighted
tree traversal method described in Friedman (2001) to do the integration. Based on the variable
types included in the projection, plot.gbm selects an appropriate display choosing amongst line
plots, contour plots, and lattice plots. If the default graphics are not sufficient the user may set
return.grid = TRUE, store the result of the function, and develop another graphic display more
appropriate to the particular example.

Value

If return.grid = TRUE, a grid of evaluation points and their average predictions. Otherwise, a plot
is returned.

Note

More flexible plotting is available using the partial and plotPartial functions.

References

J. H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(4).

B. M. Greenwell (2017). "pdp: An R Package for Constructing Partial Dependence Plots," The R
Journal 9(1), 421–436. https://journal.r-project.org/archive/2017/RJ-2017-016/index.
html.

https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
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See Also

partial, plotPartial, gbm, and gbm.object.

predict.gbm Predict method for GBM Model Fits

Description

Predicted values based on a generalized boosted model object

Usage

## S3 method for class 'gbm'
predict(object, newdata, n.trees, type = "link", single.tree = FALSE, ...)

Arguments

object Object of class inheriting from (gbm.object)
newdata Data frame of observations for which to make predictions
n.trees Number of trees used in the prediction. n.trees may be a vector in which case

predictions are returned for each iteration specified
type The scale on which gbm makes the predictions
single.tree If single.tree=TRUE then predict.gbm returns only the predictions from tree(s)

n.trees

... further arguments passed to or from other methods

Details

predict.gbm produces predicted values for each observation in newdata using the the first n.trees
iterations of the boosting sequence. If n.trees is a vector than the result is a matrix with each
column representing the predictions from gbm models with n.trees[1] iterations, n.trees[2]
iterations, and so on.

The predictions from gbm do not include the offset term. The user may add the value of the offset
to the predicted value if desired.

If object was fit using gbm.fit there will be no Terms component. Therefore, the user has greater
responsibility to make sure that newdata is of the same format (order and number of variables) as
the one originally used to fit the model.

Value

Returns a vector of predictions. By default the predictions are on the scale of f(x). For example,
for the Bernoulli loss the returned value is on the log odds scale, poisson loss on the log scale, and
coxph is on the log hazard scale.

If type="response" then gbm converts back to the same scale as the outcome. Currently the only
effect this will have is returning probabilities for bernoulli and expected counts for poisson. For the
other distributions "response" and "link" return the same.
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Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

See Also

gbm, gbm.object

pretty.gbm.tree Print gbm tree components

Description

gbm stores the collection of trees used to construct the model in a compact matrix structure. This
function extracts the information from a single tree and displays it in a slightly more readable form.
This function is mostly for debugging purposes and to satisfy some users’ curiosity.

Usage

## S3 method for class 'gbm.tree'
pretty(object, i.tree = 1)

Arguments

object a gbm.object initially fit using gbm

i.tree the index of the tree component to extract from object and display

Value

pretty.gbm.tree returns a data frame. Each row corresponds to a node in the tree. Columns
indicate

SplitVar index of which variable is used to split. -1 indicates a terminal node.

SplitCodePred if the split variable is continuous then this component is the split point. If the
split variable is categorical then this component contains the index of object$c.split
that describes the categorical split. If the node is a terminal node then this is the
prediction.

LeftNode the index of the row corresponding to the left node.

RightNode the index of the row corresponding to the right node.

ErrorReduction the reduction in the loss function as a result of splitting this node.

Weight the total weight of observations in the node. If weights are all equal to 1 then
this is the number of observations in the node.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>
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See Also

gbm, gbm.object

print.gbm Print model summary

Description

Display basic information about a gbm object.

Usage

## S3 method for class 'gbm'
print(x, ...)

show.gbm(x, ...)

Arguments

x an object of class gbm.

... arguments passed to print.default.

Details

Prints some information about the model object. In particular, this method prints the call to gbm(),
the type of loss function that was used, and the total number of iterations.

If cross-validation was performed, the ’best’ number of trees as estimated by cross-validation error
is displayed. If a test set was used, the ’best’ number of trees as estimated by the test set error is
displayed.

The number of available predictors, and the number of those having non-zero influence on predic-
tions is given (which might be interesting in data mining applications).

If multinomial, bernoulli or adaboost was used, the confusion matrix and prediction accuracy are
printed (objects being allocated to the class with highest probability for multinomial and bernoulli).
These classifications are performed on the entire training data using the model with the ’best’ num-
ber of trees as described above, or the maximum number of trees if the ’best’ cannot be computed.

If the ’distribution’ was specified as gaussian, laplace, quantile or t-distribution, a summary of the
residuals is displayed. The residuals are for the training data with the model at the ’best’ number of
trees, as described above, or the maximum number of trees if the ’best’ cannot be computed.

Author(s)

Harry Southworth, Daniel Edwards

See Also

gbm
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Examples

data(iris)
iris.mod <- gbm(Species ~ ., distribution="multinomial", data=iris,

n.trees=2000, shrinkage=0.01, cv.folds=5,
verbose=FALSE, n.cores=1)

iris.mod
#data(lung)
#lung.mod <- gbm(Surv(time, status) ~ ., distribution="coxph", data=lung,
# n.trees=2000, shrinkage=0.01, cv.folds=5,verbose =FALSE)
#lung.mod

quantile.rug Quantile rug plot

Description

Marks the quantiles on the axes of the current plot.

Usage

## S3 method for class 'rug'
quantile(x, prob = 0:10/10, ...)

Arguments

x A numeric vector.

prob The quantiles of x to mark on the x-axis.

... Additional optional arguments to be passed onto rug

Value

No return values.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>.

See Also

plot, quantile, jitter, rug.

Examples

x <- rnorm(100)
y <- rnorm(100)
plot(x, y)
quantile.rug(x)
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reconstructGBMdata Reconstruct a GBM’s Source Data

Description

Helper function to reconstitute the data for plots and summaries. This function is not intended for
the user to call directly.

Usage

reconstructGBMdata(x)

Arguments

x a gbm.object initially fit using gbm

Value

Returns a data used to fit the gbm in a format that can subsequently be used for plots and summaries

Author(s)

Harry Southworth

See Also

gbm, gbm.object

relative.influence Methods for estimating relative influence

Description

Helper functions for computing the relative influence of each variable in the gbm object.

Usage

relative.influence(object, n.trees, scale. = FALSE, sort. = FALSE)

permutation.test.gbm(object, n.trees)

gbm.loss(y, f, w, offset, dist, baseline, group = NULL, max.rank = NULL)
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Arguments

object a gbm object created from an initial call to gbm.

n.trees the number of trees to use for computations. If not provided, the the function will
guess: if a test set was used in fitting, the number of trees resulting in lowest test
set error will be used; otherwise, if cross-validation was performed, the number
of trees resulting in lowest cross-validation error will be used; otherwise, all
trees will be used.

scale. whether or not the result should be scaled. Defaults to FALSE.

sort. whether or not the results should be (reverse) sorted. Defaults to FALSE.

y, f, w, offset, dist, baseline

For gbm.loss: These components are the outcome, predicted value, observation
weight, offset, distribution, and comparison loss function, respectively.

group, max.rank

Used internally when distribution = \'pairwise\'.

Details

This is not intended for end-user use. These functions offer the different methods for computing the
relative influence in summary.gbm. gbm.loss is a helper function for permutation.test.gbm.

Value

By default, returns an unprocessed vector of estimated relative influences. If the scale. and sort.
arguments are used, returns a processed version of the same.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(5):1189-1232.

L. Breiman (2001). https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf.

See Also

summary.gbm

https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf
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summary.gbm Summary of a gbm object

Description

Computes the relative influence of each variable in the gbm object.

Usage

## S3 method for class 'gbm'
summary(
object,
cBars = length(object$var.names),
n.trees = object$n.trees,
plotit = TRUE,
order = TRUE,
method = relative.influence,
normalize = TRUE,
...

)

Arguments

object a gbm object created from an initial call to gbm.

cBars the number of bars to plot. If order=TRUE the only the variables with the cBars
largest relative influence will appear in the barplot. If order=FALSE then the first
cBars variables will appear in the plot. In either case, the function will return
the relative influence of all of the variables.

n.trees the number of trees used to generate the plot. Only the first n.trees trees will
be used.

plotit an indicator as to whether the plot is generated.

order an indicator as to whether the plotted and/or returned relative influences are
sorted.

method The function used to compute the relative influence. relative.influence is
the default and is the same as that described in Friedman (2001). The other cur-
rent (and experimental) choice is permutation.test.gbm. This method ran-
domly permutes each predictor variable at a time and computes the associated
reduction in predictive performance. This is similar to the variable importance
measures Breiman uses for random forests, but gbm currently computes using
the entire training dataset (not the out-of-bag observations).

normalize if FALSE then summary.gbm returns the unnormalized influence.

... other arguments passed to the plot function.
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Details

For distribution="gaussian" this returns exactly the reduction of squared error attributable to
each variable. For other loss functions this returns the reduction attributable to each variable in
sum of squared error in predicting the gradient on each iteration. It describes the relative influence
of each variable in reducing the loss function. See the references below for exact details on the
computation.

Value

Returns a data frame where the first component is the variable name and the second is the computed
relative influence, normalized to sum to 100.

Author(s)

Greg Ridgeway <gregridgeway@gmail.com>

References

J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(5):1189-1232.

L. Breiman (2001).https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf.

See Also

gbm

test.gbm Test the gbm package.

Description

Run tests on gbm functions to perform logical checks and reproducibility.

Usage

test.gbm()

Details

The function uses functionality in the RUnit package. A fairly small validation suite is executed
that checks to see that relative influence identifies sensible variables from simulated data, and that
predictions from GBMs with Gaussian, Cox or binomial distributions are sensible,

Value

An object of class RUnitTestData. See the help for RUnit for details.

https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf
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Note

The test suite is not comprehensive.

Author(s)

Harry Southworth

See Also

gbm

Examples

# Uncomment the following lines to run - commented out to make CRAN happy
#library(RUnit)
#val <- validate.texmex()
#printHTMLProtocol(val, "texmexReport.html")
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