Package ‘corrplot’

May 11, 2021

Type Package

Title Visualization of a Correlation Matrix

Version 0.88

Date 2021-05-11

Maintainer Taiyun Wei <weitaiyun@gmail.com>

Suggests knitr, RColorBrewer, rmarkdown, prettydoc, testthat

Description A graphical display of a correlation matrix or general matrix. It also contains some algorithms to do matrix reordering. In addition, corrplot is good at details, including choosing color, text labels, color labels, layout, etc.

License MIT + file LICENSE

URL https://github.com/taiyun/corrplot

BugReports https://github.com/taiyun/corrplot/issues

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Taiyun Wei [cre, aut], Viliam Simko [aut], Michael Levy [ctb], Yihui Xie [ctb], Yan Jin [ctb], Jeff Zemla [ctb], Moritz Freidank [ctb], Jun Cai [ctb], Tomas Protivinsky [ctb]

Repository CRAN

Date/Publication 2021-05-11 11:52:11 UTC
R topics documented:

- corrplot-package .. 2
- colorlegend ... 3
- cor.mtest .. 4
- corrMatOrder ... 5
- corrplot ... 6
- corrplot.mixed ... 15
- corrRect ... 17
- corrRect.hclust .. 18

Index 20

Description

The corrplot package is a graphical display of a correlation matrix, confidence interval or general matrix. It also contains some algorithms to do matrix reordering. In addition, corrplot is good at details, including choosing color, text labels, color labels, layout, etc.

Author(s)

Taiyun Wei (weitaiyun@gmail.com)
Viliam Simko (viliam.simko@gmail.com)
Maintainer: Taiyun Wei (weitaiyun@gmail.com)

References

See Also

The plotcorr function in the ellipse package and corrgram function in the corrgram package has some similarities.
colorlegend

Draw color legend.

Description

Draw color legend.

Usage

colorlegend(
 colbar,
 labels,
 at = NULL,
 xlim = c(0, 1),
 ylim = c(0, 1),
 vertical = TRUE,
 ratio.colbar = 0.4,
 lim.segment = "auto",
 align = c("c", "l", "r"),
 addlabels = TRUE,
 ...
)

Arguments

colbar Vector, color of colbar.
labels Vector, numeric or character to be written.
at Numeric vector (quantile), the position to put labels. See examples for details.
xlim See in plot
ylim See in plot
vertical Logical, whether the colorlegend is vertical or horizon.
ratio.colbar The width ratio of colorbar to the total colorlegend (including colorbar, segments and labels).
lim.segment Vector (quantile) of length 2, the elements should be in [0,1], giving segments coordinates ranges. If the value is NULL or "auto", then the ranges are derived automatically.
align Character, alignment type of labels, "l" means left, "c" means center and "r" right.
addlabels Logical, whether add text label or not.
... Additional arguments, passed to plot

Author(s)

Taiyun Wei
Examples

```r
cor.mtest

par(mar = rep(0,4))
plot(0,xlim = c(0,6), ylim = c(-0.5,1.2), type = "n")

colorlegend(rainbow(100), 0:9)
colorlegend(heat.colors(100), LETTERS[1:12], xlim = c(1,2))
colorlegend(terrain.colors(100), 0:9, ratio.colbar = 0.6,
            lim.segment = c(0,0.6), xlim = c(2,3), align = "l")
colorlegend(topo.colors(100), 0:9, lim.segment = c(0,0.6),
            xlim = c(3,4), align = "l", offset = 0)
colorlegend(cm.colors(100),1:5, xlim = c(4,5))
colorlegend(sample(rainbow(12)), labels = LETTERS[1:12],
            at = seq(0.05, 0.95, len = 12), xlim = c(5,6), align = "r")
colorlegend(colbar = grey(1:100 / 100), 1:10, col = "red", align = "l",
            xlim = c(0, 6), ylim = c(-0.5,-0.1), vertical = FALSE)
colorlegend(sample(rainbow(12)),
            labels = LETTERS[1:12], at = seq(0.05, 0.95, len = 12),
            xlim = c(0, 6), ylim = c(1.1, 1.2), vertical = FALSE)
```

cor.mtest

Significance test which produces p-values and confidence intervals for each pair of input features.

Description

Significance test which produces p-values and confidence intervals for each pair of input features.

Usage

```r
cor.mtest(mat, ...)
```

Arguments

- `mat` Input matrix of size FxS, with F columns that represent features and S rows that represent samples.
- `...` Additional arguments passed to function `cor.test`, e.g. `conf.level = 0.95`.

Value

Return a list containing:

- `p` Square matrix of size FxF with p-values as cells
corrMatOrder

<table>
<thead>
<tr>
<th>lowCI</th>
<th>Square matrix of size FxF, each cell represents the lower part of a confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>uppCI</td>
<td>Square matrix of size FxF, each cell represents the upper part of a confidence interval</td>
</tr>
</tbody>
</table>

See Also

Function `cor.test`

corrMatOrder

Reorder a correlation matrix.

Description

Draw rectangle(s) around the chart of correlation matrix based on the number of each cluster's members.

Usage

```r
corrMatOrder(
  corr,
  order = c("AOE", "FPC", "hclust", "alphabet"),
  hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average", "mcquitty", "median", "centroid")
)
```

Arguments

- `corr` Correlation matrix to reorder.
- `order` Character, the ordering method for the correlation matrix.
 - "AOE" for the angular order of the eigenvectors. It is calculated from the order of the angles, a_i:

 $$a_i = \arctan(e_{i2}/e_{i1}), \text{ if } e_{i1} > 0$$
 $$a_i = \arctan(e_{i2}/e_{i1}) + \pi, \text{ otherwise.}$$

 where e_1 and e_2 are the largest two eigenvalues of matrix `corr`. See Michael Friendly (2002) for details.
 - "FPC" for the first principal component order.
 - "hclust" for hierarchical clustering order.
 - "alphabet" for alphabetical order.
- `hclust.method` Character, the agglomeration method to be used when `order` is `hclust`. This should be one of "ward", "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid".
Value

Returns a single permutation vector.

Author(s)

Taiyun Wei

See Also

Package seriation offers more methods to reorder matrices, such as ARSA, BBURCG, BB-WRCG, MDS, TSP, Chen and so forth.

Examples

```r
M <- cor(mtcars)

(order.AOE <- corrMatOrder(M, order = "AOE"))
(order.FPC <- corrMatOrder(M, order = "FPC"))
(order.hc <- corrMatOrder(M, order = "hclust"))
(order.hc2 <- corrMatOrder(M, order = "hclust", hclust.method = "ward.D"))

M.AOE <- M[order.AOE, order.AOE]
M.FPC <- M[order.FPC, order.FPC]
M.hc <- M[order.hc, order.hc]
M.hc2 <- M[order.hc2, order.hc2]

par(ask = TRUE)
corrplot(M)
corrplot(M.AOE)
corrplot(M.FPC)
corrplot(M.hc)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = "ward.D")
```

Description

A graphical display of a correlation matrix, confidence interval. The details are paid great attention to. It can also visualize a general matrix by setting `is.corr = FALSE`.

`corrplot`
A visualization of a correlation matrix.
corrrplot

Usage

corrrplot(
corr,
 method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"),
 type = c("full", "lower", "upper"),
 add = FALSE,
 col = NULL,
 cl.lim = NULL,
 bg = "white",
 title = "",
 is.corr = TRUE,
 diag = TRUE,
 outline = FALSE,
 mar = c(0, 0, 0, 0),
 addgrid.col = NULL,
 addCoef.col = NULL,
 addCoef.asPercent = FALSE,
 order = c("original", "AOE", "FPC", "hclust", "alphabet"),
 hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average",
 "mcquitty", "median", "centroid"),
 addrect = NULL,
 rect.col = "black",
 rect.lwd = 2,
 tl.pos = NULL,
 tl.cex = 1,
 tl.col = "red",
 tl.offset = 0.4,
 tl.srt = 90,
 cl.pos = NULL,
 cl.length = NULL,
 cl.cex = 0.8,
 cl.ratio = 0.15,
 cl.align.text = "c",
 cl.offset = 0.5,
 number.cex = 1,
 number.font = 2,
 number.digits = NULL,
 addshade = c("negative", "positive", "all"),
 shade.lwd = 1,
 shade.col = "white",
 p.mat = NULL,
 sig.level = 0.05,
 insig = c("pch", "p-value", "blank", "n", "label_sig"),
 pch = 4,
 pch.col = "black",
 pch.cex = 3,
 plotCI = c("n", "square", "circle", "rect"),
 lowCI.mat = NULL,
)
corrplot

upCl.mat = NULL,
na.label = "?",
na.label.col = "black",
win.asp = 1,
...)

Arguments

corr
The correlation matrix to visualize, must be square if order is not "original". For general matrix, please using is.corr = FALSE to convert.

method
Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named "circle" (default), "square", "ellipse", "number", "pie", "shade" and "color". See examples for details.
The areas of circles or squares show the absolute value of corresponding correlation coefficients. Method "pie" and "shade" came from Michael Friendly’s job (with some adjustment about the shade added on), and "ellipse" came from D.J. Murdoch and E.D. Chow’s job, see in section References.

type
Character, "full" (default), "upper" or "lower", display full matrix, lower triangular or upper triangular matrix.

add
Logical, if TRUE, the graph is added to an existing plot, otherwise a new plot is created.

col
Vector, the color of glyphs. It is distributed uniformly in cl.lim interval. If NULL, col will be colorRampPalette(col2)(200), see example about col2.

cl.lim
The limits (x1,x2) interval for assigning color by col. If NULL, cl.lim will be c(-1,1) when is.corr is TRUE, . cl.lim will be c(min(corr),max(corr)) when is.corr is FALSE
NOTICE: if you set cl.lim when is.corr TRUE, the assigning color method is still distributed uniformly in [-1, 1], it only affect the display on colorlegend.

bg
The background color.

title
Character, title of the graph.

is.corr
Logical, whether the input matrix is a correlation matrix or not. We can visualize the non-correlation matrix by setting is.corr = FALSE.

diag
Logical, whether display the correlation coefficients on the principal diagonal.

outline
Logical or character, whether plot outline of circles, square and ellipse, or the color of these glyphs. For pie, this represents the color of the circle outlining the pie. If outline is TRUE, the default value is "black".

mar
See par.

addgrid.col
The color of the grid. If NA, don’t add grid. If NULL the default value is chosen. The default value depends on method, if method is color or shade, the color of the grid is NA, that is, not draw grid; otherwise "grey".

addCoef.col
Color of coefficients added on the graph. If NULL (default), add no coefficients.

addCoefasPercent
Logic, whether translate coefficients into percentage style for spacesaving.
order Character, the ordering method of the correlation matrix.
 • "original" for original order (default).
 • "AOE" for the angular order of the eigenvectors.
 • "FPC" for the first principal component order.
 • "hclust" for the hierarchical clustering order.
 • "alphabet" for alphabetical order.
See function `corrMatOrder` for details.

hclust.method Character, the agglomeration method to be used when order is `hclust`. This
should be one of "ward", "ward.D", "ward.D2", "single", "complete", "average",
"mcquitty", "median" or "centroid".

addrect Integer, the number of rectangles draws on the graph according to the hierar-
chical cluster, only valid when order is `hclust`. If NULL (default), then add no
rectangles.

rect.col Color for rectangle border(s), only valid when `addrect` is equal or greater than
1.

rect.lwd Numeric, line width for borders for rectangle border(s), only valid when `addrect`
is equal or greater than 1.

tl.pos Character or logical, position of text labels. If character, it must be one of
"lt", "ld", "td", "d" or "n". "lt"(default if type=="full") means left and
top, "ld"(default if type=="lower") means left and diagonal, "td"(default if
type=="upper") means top and diagonal(near), "d" means diagonal, "n" means
don't add textlabel.

tl.cex Numeric, for the size of text label (variable names).

tl.col The color of text label.

tl.offset Numeric, for text label, see `text`.

tl.srt Numeric, for text label string rotation in degrees, see `text`.

cl.pos Character or logical, position of color labels; If character, it must be one of "r"
(default if type=="upper" or "full"), "b" (default if type=="lower") or "n",
"n" means don't draw colorlabel.

cl.length Integer, the number of number-text in colorlabel, passed to `colorlegend`. If
NULL, cl.length is `length(col)` + 1 when `length(col)` <=20; cl.length is
11 when `length(col)` > 20

cl.cex Numeric, cex of number-label in colorlabel, passed to `colorlegend`.

cl.ratio Numeric, to justify the width of colorlabel, 0.1~0.2 is suggested.

cl.align.text Character, "1", "c" (default) or "r", for number-label in colorlabel, "1" means
left, "c" means center, and "r" means right.

cl.offset Numeric, for number-label in colorlabel, see `text`.

number.cex The cex parameter to send to the call to `text` when writing the correlation co-
efficients into the plot.

number.font the font parameter to send to the call to `text` when writing the correlation co-
efficients into the plot.
number.digits indicating the number of decimal digits to be added into the plot. Non-negative integer or NULL, default NULL.

addshade Character for shade style, "negative", "positive" or "all", only valid when method is "shade". If "all", all correlation coefficients' glyph will be shaded; if "positive", only the positive will be shaded; if "negative", only the negative will be shaded. Note: the angle of shade line is different, 45 degrees for positive and 135 degrees for negative.

shade.lwd Numeric, the line width of shade.

shade.col The color of shade line.

p.mat Matrix of p-value, if NULL, arguments sig.level, insig, pch, pch.col, pch.cex is invalid.

sig.level Significant level, if the p-value in p-mat is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant. If insig is "label_sign", this may be an increasing vector of significance levels, in which case pch will be used once for the highest p-value interval and multiple times (e.g. " *", " **", " ***") for each lower p-value interval.

insig Character, specialized insignificant correlation coefficients, "pch" (default), "p-value", "blank", "n", or "label_sign". If "blank", wipe away the corresponding glyphs; if "p-value", add p-values the corresponding glyphs; if "pch", add characters (see pch for details) on corresponding glyphs; if "n", don't take any measures; if "label_sign", mark significant correlations with pch (see sig.level).

pch Add character on the glyphs of insignificant correlation coefficients(only valid when insig is "pch"). See par.

pch.col The color of pch (only valid when insig is "pch").

pch.cex The cex of pch (only valid when insig is "pch").

plotCI Character, method of plotting confidence interval. If "n", don't plot confidence interval. If "rect", plot rectangles whose upper side means upper bound and lower side means lower bound, respectively, and meanwhile correlation coefficients are also added on the rectangles. If "circle", first plot a circle with the bigger absolute bound, and then plot the smaller. Warning: if the two bounds are the same sign, the smaller circle will be wiped away, thus forming a ring. Method "square" is similar to "circle".

lowCI.mat Matrix of the lower bound of confidence interval.

uppCI.mat Matrix of the upper bound of confidence interval.

na.label Label to be used for rendering NA cells. Default is "?". If "square", then the cell is rendered as a square with the na.label.col color.

na.label.col Color used for rendering NA cells. Default is "black".

win.asp Aspect ratio for the whole plot. Value other than 1 is currently compatible only with methods "circle" and "square".

... Additional arguments passing to function text for drawing text label.

Details
corrplot function offers flexible ways to visualize correlation matrix, lower and upper bound of confidence interval matrix.
Value

(Invisibly) returns a reordered correlation matrix.

Note

Cairo and cairoDevice packages is strongly recommended to produce high-quality PNG, JPEG, TIFF bitmap files, especially for that method circle, ellipse.

Row- and column names of the input matrix are used as labels rendered in the corrplot. Plotmath expressions will be used if the name is prefixed by one of the following characters: :, = or $. For example ":alpha + beta".

Author(s)

Taiyun Wei (weitaiyun@gmail.com)
Viliam Simko (viliam.simko@gmail.com)
Michael Levy (michael.levy@healthcatalyst.com)

References

See Also

Function plotcorr in the ellipse package and corrgram in the corrgram package have some similarities.

Package seriation offered more methods to reorder matrices, such as ARSA, BBURCG, BB-WRCG, MDS, TSP, Chen and so forth.

Examples

data(mtcars)
M <- cor(mtcars)
set.seed(0)

different color series
col0 <- colorRampPalette(c("white", "cyan", "#007FFF", "blue","#00007F"))
col1 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "white", "cyan", "#007FFF", "blue","#00007F"))
col2 <- colorRampPalette(c("#67001F",="#B2182B", "#D6604D",="#F4A582",="#FDDBC7",="#FFFFF",="#D1E5F0",="#92C5DE",="#4393C3",="#2166AC",="#053061"))
col3 <- colorRampPalette(c("red", "white", "blue"))
col4 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F", "cyan", "#007FFF", "blue", "#00007F"))
wb <- c("white", "black")

par(ask = TRUE)

different color scale and methods to display corr-matrix
 corrplot(M, method = "number", col = "black", cl.pos = "n")
 corrplot(M, method = "number")
 corrplot(M)
 corrplot(M, order = "AOE")
 corrplot(M, order = "AOE", addCoef.col = "grey")

 corrplot(M, order = "AOE", col = col1(20), cl.length = 21, addCoef.col = "grey")
 corrplot(M, order = "AOE", col = col1(10), addCoef.col = "grey")

 corrplot(M, order = "AOE", col = col2(200))
 corrplot(M, order = "AOE", col = col2(200), addCoef.col = "grey")
 corrplot(M, order = "AOE", col = col2(20), cl.length = 21, addCoef.col = "grey")
 corrplot(M, order = "AOE", col = col2(10), addCoef.col = "grey")

 corrplot(M, order = "AOE", col = col3(100))
 corrplot(M, order = "AOE", col = col3(10))

 corrplot(M, method = "color", col = col1(20), cl.length = 21, order = "AOE",
 addCoef.col = "grey")
 corrplot(M, method = "square", col = col2(200), order = "AOE")
 corrplot(M, method = "ellipse", col = col1(200), order = "AOE")
 corrplot(M, method = "shade", col = col3(20), order = "AOE")
 corrplot(M, method = "pie", order = "AOE")

col = wb
 corrplot(M, col = wb, order = "AOE", outline = TRUE, cl.pos = "n")

like Chinese wigqi, suit for either on screen or white-black print.
 corrplot(M, col = wb, bg = "gold2", order = "AOE", cl.pos = "n")

mixed methods: It's more efficient if using function "corrplot.mixed"
circle + ellipse
 corrplot(M, order = "AOE", type = "upper", tl.pos = "d")
 corrplot(M, add = TRUE, type = "lower", method = "ellipse", order = "AOE",
 diag = FALSE, tl.pos = "n", cl.pos = "n")

circle + square
 corrplot(M, order = "AOE", type = "upper", tl.pos = "d")
 corrplot(M, add = TRUE, type = "lower", method = "square", order = "AOE",
 diag = FALSE, tl.pos = "n", cl.pos = "n")

circle + colorful number
 corrplot(M, order = "AOE", type = "upper", tl.pos = "d")
 corrplot(M, add = TRUE, type = "lower", method = "number", order = "AOE",
 diag = FALSE, tl.pos = "n", cl.pos = "n")
```r
## circle + black number
corrplot(M, order = "AOE", type = "upper", tl.pos = "tp")
corrplot(M, add = TRUE, type = "lower", method = "number", order = "AOE",
        col = "black", diag = FALSE, tl.pos = "n", cl.pos = "n")

## order is hclust and draw rectangles
corrplot(M, order = "hclust")
corrplot(M, order = "hclust", addrect = 2)
corrplot(M, order = "hclust", addrect = 3, rect.col = "red")
corrplot(M, order = "hclust", addrect = 4, rect.col = "blue")
corrplot(M, order = "hclust", hclust.method = "ward.D2", addrect = 4)

## visualize a matrix in [0, 1]
corrplot(abs(M), order = "AOE", cl.lim = c(0, 1))
corrplot(abs(M), order = "AOE", col = col1(20), cl.lim = c(0, 1))

# when is.corr=TRUE, cl.lim only affect the color legend
# If you change it, the color is still assigned on [-1, 1]
corrplot(M/2)
corrplot(M/2, cl.lim=c(-0.5,0.5))

# when is.corr=FALSE, cl.lim is also used to assign colors
# if the matrix have both positive and negative values
# the matrix transformation keep every values positive and negative
corrplot(M*2, is.corr = FALSE, cl.lim=c(-2, 2))
corrplot(M*2, is.corr = FALSE, cl.lim=c(-2, 2) * 2)
corrplot(M*2, is.corr = FALSE, cl.lim=c(-2, 2) * 4)

## 0.5~0.6
corrplot(abs(M)/10+0.5, col=col0(10))
corrplot(abs(M)/10+0.5, is.corr = FALSE, cl.lim=c(0.5,0.6), col=col0(10))

## visualize a matrix in [-100, 100]
ran <- round(matrix(runif(225, -100,100), 15))
corrplot(ran, is.corr = FALSE)
corrplot(ran, is.corr = FALSE, cl.lim = c(-100, 100))

## visualize a matrix in [100, 300]
ran2 <- ran + 200
# bad color
corrplot(ran2, is.corr = FALSE, cl.lim = c(100, 300), col=col1(100))
# good color
corrplot(ran2, is.corr = FALSE, cl.lim = c(100, 300), col=col0(100))

## text-labels and plot type
corrplot(M, order = "AOE", tl.srt = 45)
corrplot(M, order = "AOE", tl.srt = 60)
```
corrplot(M, order = "AOE", tl.pos = "d", cl.pos = "n")
corrplot(M, order = "AOE", diag = FALSE, tl.pos = "d")
corrplot(M, order = "AOE", type = "upper")
corrplot(M, order = "AOE", type = "upper", diag = FALSE)
corrplot(M, order = "AOE", type = "lower", cl.pos = "b")
corrplot(M, order = "AOE", type = "lower", cl.pos = "b", diag = FALSE)

color-legend

corrplot(M, order = "AOE", cl.ratio = .2, cl.align = "l")
corrplot(M, order = "AOE", cl.ratio = .2, cl.align = "c")
corrplot(M, order = "AOE", cl.ratio = .2, cl.align = "r")
corrplot(M, order = "AOE", cl.pos = "b")
corrplot(M, order = "AOE", cl.pos = "b", tl.pos = "d")
corrplot(M, order = "AOE", cl.pos = "n")

deal with missing Values

M2 <- M
diag(M2) = NA
corrplot(M2)
corrplot(M2, na.label = "o")
corrplot(M2, na.label = "NA")

the input matrix is not square

corrplot(M[1:8,])
corrplot(M[,1:8])

res1 <- cor.mtest(mtcars, conf.level = 0.95)
res2 <- cor.mtest(mtcars, conf.level = 0.99)

specialized the insignificant value according to the significant level

corrplot(M, p.mat = res1$p, sig.level = 0.2)
corrplot(M, p.mat = res1$p, sig.level = 0.05)
corrplot(M, p.mat = res1$p, sig.level = 0.01)
corrplot(M, p.mat = res1$p, insig = "blank")
corrplot(M, p.mat = res1$p, insig = "p-value")
corrplot(M, p.mat = res1$p, insig = "p-value", sig.level = -1) ## add all p-values
corrplot(M, p.mat = res1$p, order = "hclust", insig = "blank", addrect = 3)
corrplot(M, p.mat = res1$p, order = "hclust", insig = "pch", addrect = 3)

plot confidence interval(0.95), "square" method

corrplot(M, low = res1$lowCI, upp = res1$uppCI,
 plotCI = "circle", addg = "grey20", cl.pos = "n")
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
 plotCI = "circle", addg = "grey20", cl.pos = "n")
corrplot(M, low = res1$lowCI, upp = res1$uppCI,
 col = c("white", "black"), bg = "gold2", order = "AOE",
corrplot.mixed

Using mixed methods to visualize a correlation matrix.

Description

Using mixed methods to visualize a correlation matrix.

Usage

corrplot.mixed(
corr,
lower = "number",

corrplot.mixed(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
col = c("white", "black"), bg = "gold2", order = "AOE",
plotCI = "circle", cl.pos = "n", pch.col = "red")

corrplot(M, low = res1$lowCI, upp = res1$uppCI,
col = c("white", "black"), bg = "gold2", order = "AOE",
plotCI = "square", addg = NULL, cl.pos = "n")

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
col = c("white", "black"), bg = "gold2", order = "AOE", pch.col = "red",
plotCI = "square", addg = NULL, cl.pos = "n")

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
order = "hclust", pch.col = "red", sig.level = 0.05, addrect = 3,
rect.col = "navy", plotCI = "rect", cl.pos = "n")

corrplot(M, p.mat = res2$p, low = res2$lowCI, upp = res2$uppCI,
order = "hclust", pch.col = "red", sig.level = 0.01, addrect = 3,
rect.col = "navy", plotCI = "rect", cl.pos = "n")

corrplot(M, low = res1$lowCI, upp = res1$uppCI, order = "hclust",
rect.col = "navy", plotCI = "rect", cl.pos = "n")

corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
order = "hclust", pch.col = "red", sig.level = 0.05, addrect = 3,
rect.col = "navy", plotCI = "rect", cl.pos = "n")

corrplot(M, p.mat = res2$p, low = res2$lowCI, upp = res2$uppCI,
order = "hclust", pch.col = "red", sig.level = 0.01, addrect = 3,
rect.col = "navy", plotCI = "rect", cl.pos = "n")

corrplot.mixed(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
order = "hclust", pch.col = "red", sig.level = 0.05, addrect = 3,
rect.col = "navy", plotCI = "rect", cl.pos = "n")

corrplot.mixed(M, p.mat = res2$p, low = res2$lowCI, upp = res2$uppCI,
order = "hclust", pch.col = "red", sig.level = 0.01, addrect = 3,
rect.col = "navy", plotCI = "rect", cl.pos = "n")

an animation of changing confidence interval in different significance level
begin.animator
par(ask = FALSE)
for (i in seq(0.1, 0, -0.005)) {
 tmp <- cor.mtest(mtcars, conf.level = 1 - i)
 corrplot(M, p.mat = tmp$p, low = tmp$lowCI, upp = tmp$uppCI, order = "hclust",
pch.col = "red", sig.level = i, plotCI = "rect", cl.pos = "n",
mar = c(0, 0, 1, 0),
title = substitute(alpha == x,
 list(x = format(i, digits = 3, nsmall = 3))))
 Sys.sleep(0.15)
}
end.animator
upper = "circle",
tl.pos = c("d", "lt", "n"),
diag = c("n", "l", "u"),
bg = "white",
addgrid.col = "grey",
lower.col = NULL,
upper.col = NULL,
plotCI = c("n", "square", "circle", "rect"),
mar = c(0, 0, 0, 0),

Arguments

corr Matrix, the correlation matrix to visualize.
lower Character, the visualization method for the lower triangular correlation matrix.
upper Character, the visualization method for the upper triangular correlation matrix.

lower méthod, "lt" or "n", giving position of text labels, "lt" means left and
top, "d" means diagonal. If "n", add no text label.
diag Character, for specifying the glyph on the principal diagonal. It is one of "n" (default, draw nothing), "l" (draw the glyphs of lower triangular) or "u" (draw the glyphs of upper triangular).

bg The background color.
addgrid.col See the addgrid.col parameter in the function corrplot
lower.col Passed as col parameter to the lower matrix.
upper.col Passed as col parameter to the upper matrix.
plotCI See the plotCI parameter in the function corrplot
mar See par.

Author(s)
Taiyun Wei

Examples
M <- cor(mtcars)
ord <- corrMatOrder(M, order = "AOE")
M2 <- M[ord, ord]
corrplot.mixed(M2)
corrplot.mixed(M2, lower = "ellipse", upper = "circle")
corrplot.mixed(M2, lower = "square", upper = "circle")
corrplot.mixed(M2, lower = "shade", upper = "circle")
corrplot.mixed(M2, tl.pos = "lt")
corrplot.mixed(M2, tl.pos = "lt", diag = "u")
corrRect

```
corrplot.mixed(M2, tl.pos = "lt", diag = "l")
corrplot.mixed(M2, tl.pos = "n")
```

corrRect

Draw rectangle(s) on the correlation matrix graph.

Description

Draw rectangle(s) around the chart of correlation matrix.

Usage

```
corrRect(clus, col = "black", lwd = 2)
```

Arguments

- `clus` Vector, the number of each cluster’s members.
- `col` Color of rectangles.
- `lwd` Line width of rectangles.

Details

`corrRect` needs the number (parameter `clus`) of each cluster’s members, while `corrRect.hclust` can get the members in each cluster based on hierarchical clustering (`hclust`).

Author(s)

Taiyun Wei

Examples

```
data(mtcars)
M <- cor(mtcars)
corrplot(M, method = "circle", order = "FPC")
corrRect(c(5,6))

(order.hc <- corrMatOrder(M, order = "hclust"))
(order.hc2 <- corrMatOrder(M, order = "hclust", hclust.method = "ward.D"))
M.hc <- M[order.hc, order.hc]
M.hc2 <- M[order.hc2, order.hc2]

par(ask = TRUE)

# same as: corrplot(M, order = "hclust", addrect = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)

# same as: corrplot(M, order = "hclust", addrect = 3)
corrplot(M.hc)
```
corrRect.hclust(corr = M.hc, k = 3)

same as: corrplot(M, order = "hclust", hclust.method = "ward.D", addrect = 2)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = "ward.D")

same as: corrplot(M, order = "hclust", hclust.method = "ward.D", addrect = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 3, method = "ward.D")

same as: corrplot(M, order = "hclust", hclust.method = "ward.D", addrect = 4)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 4, method = "ward.D")

corrRect.hclust

Draw rectangles on the correlation matrix graph.

Description

Draw rectangles on the correlation matrix graph based on hierarchical cluster (hclust).

Usage

corrRect.hclust(
 corr, # Correlation matrix for function corrRect.hclust. It use 1-corr as dist in hierarchical clustering (hclust).
 k = 2, # Integer, the number of rectangles drawn on the graph according to the hierarchical cluster, for function corrRect.hclust.
 col = "black", # Color of rectangles.
 lwd = 2, # Line width of rectangles.
 method = c("complete", "ward", "ward.D", "ward.D2", "single", "average", "mcquitty", "median", "centroid")
)

Arguments

corr Correlation matrix for function corrRect.hclust. It use 1-corr as dist in hierarchical clustering (hclust).

k Integer, the number of rectangles drawn on the graph according to the hierarchical cluster, for function corrRect.hclust.

col Color of rectangles.

lwd Line width of rectangles.

method Character, the agglomeration method to be used for hierarchical clustering (hclust). This should be (an unambiguous abbreviation of) one of "ward", "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid".

Author(s)

Taiyun Wei
Examples

```r
data(mtcars)
M <- cor(mtcars)
corrplot(M, method = "circle", order = "FPC")
corrRect(c(5,6))

(order.hc <- corrMatOrder(M, order = "hclust"))
(order.hc2 <- corrMatOrder(M, order = "hclust", hclust.method = "ward.D2"))
M.hc <- M[order.hc, order.hc]
M.hc2 <- M[order.hc2, order.hc2]

par(ask = TRUE)

# same as: corrplot(M, order = "hclust", addrect = 2)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 2)

# same as: corrplot(M, order = "hclust", addrect = 3)
corrplot(M.hc)
corrRect.hclust(corr = M.hc, k = 3)

# same as: corrplot(M, order = "hclust", hclust.method = "ward.D2", addrect = 2)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 2, method = "ward.D2")

# same as: corrplot(M, order = "hclust", hclust.method = "ward.D2", addrect = 3)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 3, method = "ward.D2")

# same as: corrplot(M, order = "hclust", hclust.method = "ward.D2", addrect = 4)
corrplot(M.hc2)
corrRect.hclust(M.hc2, k = 4, method = "ward.D2")
```
Index

* confidence
 cor.mtest, 4
* correlation
 corrplot-package, 2
* correlogram
 corrplot-package, 2
* dimensionality
 corrplot-package, 2
* feature
 corrplot-package, 2
* hplot
 colorlegend, 3
corrMatOrder, 5
corrplot-package, 2
corrRect, 17
corrRect.hclust, 18
* p-value
 cor.mtest, 4
* reduction
 corrplot-package, 2
* selection
 corrplot-package, 2
* significance
 cor.mtest, 4

colorlegend, 3, 9
cor.mtest, 4
cor.test, 4, 5
corrMatOrder, 5, 9
corrplot, 6, 16
corrplot-package, 2
corrplot.mixed, 15
corrRect, 17
corrRect.hclust, 18

hclust, 9, 17, 18
par, 8, 10, 16
plot, 3
text, 9